
Page 1 of 17

2011-01-0448

An AUTOSAR-Compliant Automotive Platform

for Meeting Reliability and Timing Constraints

Author, co-author list (Please ensure the Participant tab in MyTechZone matches the
author information entered here including author/co-author order. SAE will populate the

information in this section from MyTechZone when publishing your final paper)
Affiliation (Please ensure the Participant tab in MyTechZone matches the affiliation information entered here including author/co-

author order. SAE will populate the information in this section from MyTechZone when publishing your final paper)

Author, co-author list (Please ensure the Participant tab in MyTechZone matches the
author information entered here including author/co-author order. SAE will populate the

information in this section from MyTechZone when publishing your final paper)
Affiliation (Please ensure the Participant tab in MyTechZone matches the affiliation information entered here including author/co-

author order. SAE will populate the information in this section from MyTechZone when publishing your final paper)

Copyright © 2011 SAE International

ABSTRACT

High demands on advanced safety and driving functions, such as active safety and lane departure warnings, increase a vehicle’s

dependency on automotive electrical/electronic architectures. Hard real-time requirements and high reliability constraints must be

satisfied for the correct functioning of these safety-critical features, which can be achieved by using the AUTOSAR (Automotive

Open System Architecture) standard. The AUTOSAR standard was introduced to simplify automotive system design while offering

inter-operability, scalability, extensibility, and flexibility. The current version of AUTOSAR does not assist in the replication of tasks

for recovering from task failures. Instead, the standard assumes that architecture designers will introduce custom extensions to meet

such reliability needs. The introduction of affordable techniques with predictable properties for meeting reliability requirements will

prove to be very valuable in future versions of AUTOSAR.

In this paper, we propose a new Software-Component (SW-C) allocation algorithm called R-FLOW (Reliable application-FLOW-

aware SW-C partitioning algorithm) for fail-stop processors to support fault-tolerance with bounded recovery times, and we integrate

the R-FLOW algorithm into AUTOSAR. R-FLOW leverages different types of replication schemes to satisfy reliability and timing

constraints, while offering a high degree of resource utilization and flexibility. Specifically, R-FLOW classifies real-time periodic

tasks into Hard Recovery tasks, Soft Recovery tasks, and Best-Effort Recovery tasks. Hot Standbys are used for recovering from

failures of hard recovery tasks, whereas Cold Standbys are utilized for recovering from failures of soft recovery and best-effort

recovery tasks. With this goal in mind, we design and implement our proposed architecture within the guidelines of the current

AUTOSAR framework. We have built an at-scale prototyping platform, comprising of Freescale HCS12X processing boards, a dual-

channel FlexRay bus, and a CAN network. Our proposed architecture is evaluated on this platform using reliability and timeliness

metrics in the context of different fault scenarios.

INTRODUCTION

Continuing improvements on embedded systems encourage x-by-wire technology as well as various types of safety and comfort

features in future vehicles [1]. In particular, safety features such as lane keeping, lane changing, collision avoidance and driver

warning require high dependability because of their safety-critical nature. However, these features require complex hardware and

software platforms, and the design and implementation of these features is a challenge. Moreover, because safety features are

composed of several subsystems including sensors, processors, and actuators, the whole system needs to be carefully designed to

avoid situations where, for example, a single defective sensor can cause an unintended event [12]. Modern multi-core processors can

Page 2 of 17

execute several applications in parallel and still the overall system needs to be designed such that single chip failures cannot result in

an undesirable situation. Hence, system-level dependability is a key concern in rapidly evolving automotive industries.

Dependable systems can be implemented by using fault-tolerant techniques, and the conventional fault-tolerance technique is to

replicate processes, either concurrently or sequentially. Graceful degradation can also contribute to system dependability [11].

However, graceful degradation can involve considering all possible failure scenarios, which can be an exponentially hard problem.

Replication, such as Triple Modular Redundancy (TMR) for hardware and N-version programming for software, is a typical approach,

but it requires more resources than graceful degradation. Although these techniques have been extensively used in domains such as

avionics, space shuttles, and industrial facilities, they may not always be appropriate long-term solutions for automotive architectures

due to these exorbitant costs. Our work presents resource-efficient techniques for achieving the required dependability.

Applications in the automotive system are closely connected to the physical environment and use sensor information to obtain current

physical information. For example, in Steer-by-Wire (SBW) systems [3], sensors measure information about steering wheel

movement, and computational components in microprocessors compute signals for controlling the wheels with the information from

sensors. Actuators receive the control signals for the motors directly, and these signals are handled periodically for timely handling of

user operations and reactions to the environment.

In order to reflect this nature, we define an application flow, which is composed of periodically executing runnables generating

information data and events regularly that flow through multiple runnables. An application flow also has an end-to-end delay from

input to output. Each runnable is represented by a periodic task [13], , which releases a job every units of time, where each job

consumes at most units of computation time and should be completed within a relative deadline, .

Within an application flow, runnables are classified into sensor/actuator runnables and computational runnables. For instance, an

actuator runnable controlling the steering wheel motors must run on the Electronic Control Unit (ECU) connected to the motors in an

SBW system. Every runnable generates data to be fed to other runnables, except actuator runnables which terminate an application

flow. Figure 1 and Figure 2 show an exemplary diagram of an application flow applied to the autonomous vehicle which won the

DARPA Urban Challenge [17].

Figure 1: The application flow model can be applicable to a driverless car

Figure 2: An exemplary Application flow from Figure 1, where represents a runnable, and m denotes a message between two

runnables

Handling failures on-demand with bounded recovery time is desirable for real-time fault-tolerant systems. By handling failures within

a pre-defined timing boundary, Time-To-Recovery can be bounded, and the system can operate continuously. To limit Time-To-

Recovery, our previous research [9] categorized software tasks into three classes: Hard Recovery Tasks, Soft Recovery Tasks, and

Best-Effort Recovery Tasks. We apply the same classification to Software-Components (SW-Cs), where a runnable is a part of an

Page 3 of 17

SW-C [6]. An SW-C with the requirement of completing a released job within a units of time, even with the presence of failures, is

classified as a Hard Recovery Software-Component (HSC). A Soft Recovery Software-Component (SSC) is an SW-C with a more

relaxed recovery-time requirement; a released job can miss the deadline , but it should be recovered within a bounded time when a

failure is present. An optional SW-C that is not critical for system operation and does not require bounded recovery time is classified

as a Best-Effort Recovery Software-Component (BSC). The R-BATCH (Reliable Bin-packing Algorithm for Tasks with Cold standby

and Hot standby) scheme [9] provides a comprehensive solution that allocates HSC, SSC, and BSC to multi-processors for

guaranteeing reliability requirements with bounded recovery times.

From a dependability perspective, a single failure of a runnable within an application flow may affect all of its successors such that the

overall application flow requirement is violated. R-BATCH, which uses Hot Standby and Cold Standby with stand-alone runnables,

cannot be directly utilized for systems with data dependencies. Therefore, we propose a new allocation algorithm, R-FLOW (Reliable

application-FLOW-aware SW-C partitioning algorithm), designed for the application flow model. R-FLOW has three properties that

distinguish it from R-BATCH:

 A new application flow model that captures communication among SW-Cs,

 Clustering of SW-Cs based on their communication bandwidth needs,

 Controlling the number of Hot Standbys and Cold Standbys while guaranteeing the recovery-time requirement of all

application flows.

In this paper, we assume a fail-stop failure model [5], where a failed component is assumed to stop generating any data and a working

component can assume control by detecting the lack of output from the failed component. The component that takes over then aims to

meet the desired deadline of the failed component.

We also aim at supporting R-FLOW within the AUTOSAR framework [2] for providing dependability. The AUTOSAR framework

comprises of application software, a Virtual Functional Bus and a Runtime Environment (RTE). The RTE is responsible for enabling

interaction between application software and the operating system along with support for different services within AUTOSAR.

Currently, there is no explicit support for recovering from task failures by means of task replications within AUTOSAR. The standard

instead assumes that architecture designers will introduce custom extensions to meet such reliability needs. In this paper, we propose

enhancements to the different layers of AUTOSAR to enable fault-tolerance and, therefore, provide support for R-FLOW. This

enables fault-tolerance support to be built into the framework by providing an API for fault-tolerance rather than having to rely on

custom service modules.

The rest of this paper is organized as follows. The next section describes the system model with the timing properties of different SW-

C replication mechanisms in a multiprocessor environment. Then, R-FLOW, a new SW-C partitioning algorithm, is proposed. Based

on the proposed algorithm, R-FLOW, fault-tolerance characteristics within the AUTOSAR framework is summarized. After that, R-

FLOW is evaluated by using an AUTOSAR-compliant fault-tolerant platform implementation. Finally, we provide our concluding

remarks in the final section.

SYSTEM MODEL AND DESIGN

One of our goals is to minimize the required number of processors for allocating a given set of AUTOSAR runnables with data

dependencies while guaranteeing end-to-end delays of all application flows even if there are permanent (fail-stop) processor failures.

Given a system reliability requirement, a certain number of failures will be tolerated. We now present the software/hardware

architecture and hardware fault model.

SOFTWARE ARCHITECTURE

We assume a set of given runnables, , which is composed of runnables, and . Each runnable is a part of an atomic

SW-C, j, which may have several runnables. For representing the relationship between a runnable, , and an SW-C, j, we define a

function such that () when contains . The inverse function of , , returns all runnables contained in an SW-C.

The set of SW-Cs, , is also given. For guaranteeing different recovery requirements, we classify into three overlapping sets, Hard

Recovery Software Component Set, , Soft Recovery Software Component Set, , and Best-effort Recovery Software Component

Page 4 of 17

Set, . Each SW-C, j, is an element of at least one
1
 of the three subsets, and . The exact definition of these subsets is

defined in a later section.

A subset contains runnables for the k
th

 application flow out of total m application flows. For a certain runnable, ,

also can be an element of where . The relationship among runnables in the k
th

 application, , is represented by a directed

graph, . Inside the graph , a node u denotes a runnable, , and an edge (u, v) of indicates a data flow from u to v. An

edge (u, v) has its own message, , which is generated by the node , and consumed by the node in . The allocation of each

runnable, , to is assumed to be given at design time. Let () be the node of allocated to the runnable, . If is not a

member of , the value of () is . This function also works with an SW-C. An application flow, , is represented by a

couple (
) where, is an end-to-end delay requirement, and

 is a period of the application . The end-to-end delay is

defined as the worst-case delay between the release time of the first executed node in and the completion time of the last executed

node in . All runnables in the application share the same period
 .

A runnable, , is represented by a quadruple (), where is its worst-case execution time, is its period, is its relative

deadline to the release time of each job (instance), and is the ratio of recovery time to relative deadline. The recovery time is

defined as the time instant relative to the release time of a failed job, and the failed job must be fully recovered at the recovery time.

For instance, if , the replica of the runnable should recover what is supposed to execute within the original relative

deadline, . Let denote the response time of a runnable , where the response time is the time interval between job release and

job completion of . Although all runnables in one application have the same period, the deadlines of those runnables will be

determined based on the end-to-end delay requirement, for .

An SW-C is also represented by a quadruple (), but it differs from a runnable in that is set to m () , is

m n () , is m n () , and j is m n () . Let denote the utilization of an SW-C , and it is defined

as

⁄ . The density of is defined as

⁄ and denoted by . Both and are used for measuring the amount of processor

resources consumed by . Every SW-C can have () Hot Standby replicas
2
, which is represented by

 ()

 . Either

 or
 denotes the primary of . Since our objective is to tolerate processor failures, each SW-C j also can have (), which is

 () Cold Standby replicas, which are represented by

 ()
 .

HARDWARE ARCHITECTURE AND FAULT HYPOTHESIS

Figure 3: Abstracted hardware architecture

We will adopt the abstracted platform architecture shown in Figure 3. In this architecture, we will assume that we use a fault-tolerant

network such as FlexRay [4] as the underlying in-vehicle network. Leveraging timeliness of such a network can guarantee the

bounded delivery of packets generated by each SW-C. In other words, we can focus only on permanent processor failures rather than

network failures.

1
 If an SW-C is involved in both and , the SW-C has runnables of both Hot Standby and Cold Standby.

2
 In this paper, we create a new AUTOSAR task for each replica of SW-C. The reason behind this is that assigning several runnables

to one AUTOSAR task can delay the Time-To-Recovery when a failure occurs.

Page 5 of 17

A set of processors (or ECUs), P, is used for running a runnable set, . P is composed of l homogeneous processors, .
Then, is the set of processors utilized by SW-C and its Hot Standby replicas. Each element of , is the processor allocated

to , the j
th

 Hot Standby replica of SW-C . Two replicas of the same SW-C cannot be allocated to the same processor. We refer

to this as a placement constraint. It can be expressed as , , where . Each processor has its own failure rate, ,

which denotes the probability of a permanent failure. We assume homogeneous processors for convenience of presentation, i.e.

 . In this paper, only permanent failures are considered [5]. Occurrences of fail-stop failures of these processors

can be detected by using periodic heartbeat signals.

DEALING WITH END-TO-END DELAY OF AN APPLICATION FLOW

Under the given requirements on end-to-end delay of an application flow and DMS (Deadline Monotonic Scheduling) [18], the

deadline of a runnable should be determined. The shorter the deadline of a runnable, the more responsive is the system. However, with

a shorter deadline, a runnable has larger density, and the system may need more processors. Hence, our design objective is to pick the

longest deadline that meets the end-to-end delay of a given application flow.

The end-to-end delay for an application flow is calculated in [10], where a pipeline task model is used on a FlexRay network. For ,

 is bounded by the following equation.

 ∑ (() ⌈
 () ()

⌉ ())

| |

 (| |) (| |)

 (1)

where, | | represents the number of elements in , is the response time of a runnable , is the period of message , is the

communication cycle length of the FlexRay network, is the period of runnable , and is the duration of a static slot in the

FlexRay network. Under the assumption that the FlexRay network is synchronized among ECUs, can be omitted because

reflects the offset to in terms of . The response time of each runnable can be obtained by using the standard response-time test

in the AUTOSAR framework as described in [14]. Then, we can obtain the deadlines of runnables by satisfying the following

objective function for each application flow.

m n m ∑
| |

 (2)

 (3)

 o (4)

In the above objective function, we want to minimize the density , which is defined as

⁄ , for saving resources while the end-to-

end delay requirement is met by Constraint (3). If we find a set of deadlines for each runnable which minimizes the objective function

above, those deadlines can be used for allocating runnables to processors. In this paper, due to the NP-hardness of the given objective

function, we use a heuristic which assigns a deadline to each runnable that is proportional to its period such that it follows the RMS

(Rate Monotonic Scheduling) priority assignment [13]. Each deadline is assigned by the following equation.

(∑ ⌈

 () ()

⌉

)

∑

⁄
 (5)

HOW TO DETERMINE STANDBY TYPE

Task replication is a fundamental method for improving the reliability of a target system. In that sense, replicating SW-Cs in the

AUTOSAR framework can increase system reliability. SW-Cs on multiple ECUs can recover SW-Cs on failed processors. In this

paper, we consider two techniques for replicating SW-Cs viz. Hot Standby and Cold Standby with different timing characteristics [9].

Page 6 of 17

 Hot Standby Approach: This approach uses two or more on-line copies of a certain SW-C. One or more replicas of the SW-C

will be active simultaneously. Each replica must be on a different processor, in order to make sure that at least one of them is

working when an ECU failure occurs. When a failure occurs, a replica will take over the task on a failed processor. At least

one of the backup replicas should meet the original deadline when a failure occurs. Hot Standby replicas are released

synchronously with that of the primary copy and execute in parallel with the same deadline. Any Hot Standby can be

promoted to be the primary after a primary fails.

 Cold Standby Approach: In this case, replicas are not active until triggered due to failures. In other words, they only utilize

memory, but not processor cycles under normal operation, and they are activated on demand when failures occur. Only the

state information of each primary copy needs to be shared and updated among replicas. When failures occur, they should be

detected as soon as possible, and the SW-Cs on failed ECUs should be recovered using replicas within a predefined time. The

main benefit of using Cold Standbys is that the Cold Standby replicas for processors other than those hosting a certain SW-C

can be consolidated. Suppose an SW-C set * +, and both SW-Cs have a utilization of 0.6 each. They cannot fit into

one processor together. Hence, in order to tolerate one failure per SW-C by using only Hot Standbys, two more processors

will be required. A Cold Standby, however, can use only one processor since the Cold Standbys for both and can be

co-resident on a single processor if their primaries are running on different processors.

The benefit of using a Hot Standby is its ability, when the primary fails, to meet the original deadline with a smaller timing penalty

than the Cold Standby approach, since all Hot Standbys are running concurrently with the primary component. However, Hot

Standbys require additional resources, () times for . For the Cold Standby approach, when there are no failures, only the

primary copy is executed. Since processor failures can be detected through the properties of fail-stop processors, the failure of a

primary copy triggers the execution of a Cold Standby unless a Hot Standby is running. For bounding recovery time, we use Transient

Overload Density (TOD), which is extended from Transient Overload Utilization defined in [9]. TOD is the additional processor

utilization required for an SW-C that is recovered through the Cold Standby approach. TOD is the required additional resource for re-

executing an SW-C on a new processor within the remaining time, , after a processor fails. Let
 denote the TOD of .

Then, we can use the result that
 , when from [9] to determine the type of replicas for .

By using a large ,
 can be relaxed. The importance of this result is seen in the following example. Suppose that an SW-C with

 uses a Standby. Then, the backup copy of should meet the condition . Therefore,

. Since

 ,
 , where the Hot Standby approach might be appropriate. For , the utilization of the standby goes down, but the

recovery time goes up. Hence, based on the value of , we can choose the type of Standby. An important observation regarding the

Cold Standby approach is that the processor running the backup should have enough unused utilization. The reserved slack for Cold

Standby replicas can be used by any SW-C in the presence of failures, but the reserved utilization for Hot Standby cannot be utilized

by other SW-Cs.

A Cold Standby can also be promoted to a Hot Standby if the primary of fails and the current number of is less than (). Since

at least one Hot Standby for a certain can meet its original deadline, , the system can be ready to tolerate another potential failure

if a Cold Standby can be promoted to a Hot Standby. By using this approach, we can tolerate as many as failures for .

FAULT-TOLERANT SW-C ALLOCATION WITH APPLICATION FLOWS

This paper proposes a comprehensive method for allocating SW-Cs
3
 to processors while meeting the requirements on reliability and

end-to-end delay. The proposed scheme is composed of two complementary phases: flow-aware allocation and reliability-aware

allocation. The flow-aware allocation tries to co-locate SW-Cs which have dependencies on each other such that the end-to-end delay

can be reduced. After all primary SW-Cs are allocated, their replicas can be placed on appropriate processors while satisfying the

placement constraint. Hot Standbys and Cold Standbys will be allocated differently because Cold Standbys only use up memory, but

not processor utilization.

3
 Allocating a runnable in the AUTOSAR framework implies that the corresponding SW-C is also allocated. In other words, all

runnables of a SW-C should be assigned to one processor. The replication of a runnable therefore implies a SW-C replication.

Page 7 of 17

SW-C ALLOCATION WITH APPLICATION FLOWS

Using fewer processors than conventional allocation methods is a major goal in this paper. The allocation of SW-Cs to processors

during design time is a well-known bin-packing problem [15]. Each SW-C is treated as an item to be packed with a size, utilization

value , and these items will fill up one or more processors, each having a total capacity of 1 under the assumption that the SW-C

periods are harmonic. If an item does not fit into the remaining space of any available processors, one more processor is added. Since

the bin-packing problem is known to be NP-hard [15], there are various types of heuristics such as BFD (Best-Fit Decreasing), FFD

(First-Fit Decreasing), WFD (Worst-Fit Decreasing), and NFD (Next-Fit Decreasing). However, none of these heuristics considers

dependencies among SW-Cs for using a fewer number of processors.

In the previous section, we stated that co-locating SW-Cs that have dependencies on each other can reduce the amount of required

resources. Suppose that we are given an application , which is composed of a set of runnables, * +. The graph for

depicted in Figure 4, shows that has a pipeline task model. Each runnable has the period of 100ms, 100ms, and 100ms, and the

worst-case execution time of 10ms, 10ms, and 10ms, respectively. A set of SW-Cs corresponding to is given in * +,
where each SW-C has only one runnable. The length of the communication cycle in FlexRay is assumed to be 20ms, and the slot

duration is 10μs, which is negligibly small. The end-to-end delay for should be equal to or less than 300ms. Suppose that all three

SW-Cs communicate via a FlexRay network. Then, if all job instances are completed by their deadlines, the given end-to-end delay

cannot be satisfied due to the communication delay. For example, if a job instant of which is released at 0ms finishes at 100ms, a

generated message by will spend one FlexRay slot at least for transmission and may arrive at 120ms due to the communication

cycle, where all these effects are reflected in Equation (5). If the same behavior happens on the second processor running , the end-

to-end delay will not be satisfied. Therefore, in order to meet the requirement, the relative deadline of each SW-C should be 80ms,

80ms, and 80ms, which gives a large density value, 0.375 (⁄ ⁄ ⁄). If we assume, however, that all SW-Cs are allocated to

the same processor, a deadline of 100ms would be enough for each SW-C giving 0.3 as the total density of the given SW-C set,

representing a utilization savings of 25%. This example illustrates that co-locating SW-Cs communicating with each other on a

FlexRay network can save a substantial amount of resources.

Figure 4: the graph G for the application A

We propose a technique called FBFD (Flow-BFD), a variant of BFD which considers dependencies among application flows. We use

BFD as a base-line algorithm rather than other heuristics such as WFD and NFD due to its well-known worst-case behavior [15]. For

SW-C allocation, the original BFD (1) sorts the SW-Cs in descending order of their densities, (2) allocates the next SW-C into the

processor that it best fits into, (3) adds a new processor if an SW-C does not fit into any current processor, and (4) iterates this

procedure until no SW-Cs remain. Here, we used SW-Cs instead of using runnables because should be allocated to a

processor together.

FBFD uses a flexible definition of items to be packed. It tries to allocate all corresponding SW-Cs of an application flow as a single

item when possible. Else, it splits these consolidated items when necessary. FBFD starts by combining SW-Cs as part of the same

application flow, where these composite-SW-Cs can include several application flows because one SW-C can be used by several

application flows. These consolidated SW-Cs are sorted in descending order of size in terms of their total densities. Then, FBFD fits

the next SW-C into the best processor. If there is no processor into which an SW-C fits into, this SW-C is set aside and FBFD searches

for any unallocated SW-Cs in the list which can fit into the current processors. If FBFD cannot find any such SW-C, it picks the

biggest unallocated composite-SW-C among remaining composite-SW-Cs, and splits it into two pieces such that at least one piece can

be allocated to the remaining space. In this case, the sum of densities of two pieces will be greater than the size of the original

combined SW-Cs due to the communication delay. A new processor is added if necessary, and the remaining piece will be sorted

again in descending order of sizes with other remaining unallocated composite-SW-Cs. These steps will be iterated until no SW-Cs

remain. This procedure is also described in Figure 5.

Page 8 of 17

Figure 5: Pseudo-code of FBFD

FAULT-TOLERANT SW-C ALLOCATION

We now extend FBFD to make it into a reliability-aware allocation scheme, R-FLOW. For achieving this goal, we (1) allocate replicas

of SW-Cs and (2) spread those replications across different processors while satisfying the placement constraint. Different forms of

replicas, Hot Standbys and Cold Standbys, will be allocated depending on the application flow properties.

Satisfying Reliability Requirements

Consider a uniform multiprocessor system with processors. Let F denote the system Safety Integrity Level (SIL) [20] requirement

specified in terms of the PFD (Probability of Failure on Demand). Let the reliability specification of each individual processor be f,

denoting that the processors are designed to have a PFD less than f . Based on F and f, the system designer must estimate , which is

the minimum number of additional processors required to satisfy the system reliability. should be greater than the maximum number

(m) of processor failures that can be expected in () processors.

ΩC ←

 ←

FBFD (*ⱷ ⱷ ⱷ▪+ * ▪+ ╟)

// Consolidate SW-Cs based on application flows

for i=1 to n do

 if ‫ ∉ ΩC

 Find a composite-SW-C ωc communicating with ‫

 if ωc exists then

 ΩC ← ΩC ∪ *+‫

 else // Generate a new composite-SW-C

 Ω
(Ω)
C ← *+‫

 ΩC ← Ω ∪Ω
 (Ω)

end for

Sort ΩC in descending order of density

while(ΩC)
if i = 0 then,

 // Split the biggest composite into two pieces

 // such that one piece can fit into the processor

 // which has the largest remaining space

 // and satisfies the placement constraint

 ΩC ← Ω Ω Ω
 (Ω)
C

 Update Πj such that ωj Ω Ω
 (Ω)

 Add a new processor, P| |
// Satisfying the placement constraint

 For ΩC, find a best processor, Pk s.t. Pk ∉ Π & ωj Ω

 if Pk exists then,

 // Allocate ωc to ὖ

 Update Πj such that ωj Ω

 ΩC ← Ω Ω

 else

 continue

 n ← n

 n ← n mod |ΩC|
end while

return (P, Π)

Page 9 of 17

 { | ∑ ()

 } (6)

 { | ∑ (

) ()

 } (7)

A system designer may choose a value of greater than the one obtained using Equation (6, 7) depending on design margins.

R-FLOW: Allocating Hot standby/Cold Standby with FBFD

Suppose we have the same exemplary set of SW-Cs as given in the previous subsection. The only difference is that has one Hot

Standby,
 . Even if all the primary SW-Cs are allocated together by FBFD, the placement constraint brings a new processor for

allocating
 . The deadline of

 should be recalculated in this case because the pipeline,
 , from Figure 4 should

meet the end-to-end delay requirement. Since the periods of and are already known to be 100ms and 100ms, respectively,

Equation (5) can be used for determining as 75ms, which generates a big item in terms of density. As this example shows, the

deadline of each Hot Standby should be recalculated for allocating it. This deadline recalculation also affects the sorting which

happens at the beginning of the allocation because an SW-C with low density does not necessarily mean a Hot Standby with low

density. Therefore, after all primaries are allocated, the SW-Cs are sorted again in decreasing order, in accordance with BFD. This

procedure of deadline recalculation and resorting is also executed whenever all j
th

 replicas are allocated. Due to the recalculation of

deadlines, the TOD of each SW-C is also affected. If the TOD of an SW-C becomes negative and it does not have any Hot Standby,

the SW-C cannot be recovered within its required recovery time. In this case, the number of Hot Standby should be adjusted

accordingly. Reflecting these properties, we propose a new allocation method, R-FLOW, which allocates primaries, Hot Standbys, and

Cold Standbys with application flows. The pseudo-code for R-FLOW is described in Figure 6, where generateVirtualTask() is

described in [9].

Figure 6: Pseudo-code of R-FLOW

FAULT-TOLERANCE WITH AUTOSAR

We now describe how an implementation of our approach can be integrated into the AUTOSAR framework. We made modifications

to various modules within AUTOSAR to enable our fault-tolerance algorithm. This section gives a description of the changes made as

well as a description of services introduced as part of the implementation.

To support the replication of SW-Cs, the AUTOSAR Software Component Template was modified to introduce new properties. An

Automotive Safety Integrity Level (ASIL) value is assigned to every SW-C to represent the level of safety required for that particular

component. This enables R-FLOW to pick the replication scheme to apply, assuming that the replication of an SW-C results in the

replication of all of its runnables. A new structure was added to the Software Component Template which provides a description of the

internal data representing the current state of the runnable. This is required to enable Cold Standbys to remain synchronized with the

primary component to ensure that the Cold Standby has the most current state available when it is activated. To this end, a property

(Ω Π) ← g n t V tu lT sk(Ω Π P π)

R-FLOW

// Allocate the primaries first

(P Π) ← FBFD(Ω← *‫ ‫ ‫ + Π← P ←)

// Allocate the replicas one by one

for j=1 to m Ω(‪(Ὧ))

 Recalculate the deadlines

 Recalculate the number of Hot Standbys

 // ignore SW-Cs that do not need j
th

 replicas

 ωi s.t. ‪(Ὥ) Ὦ, ω
h ←

 (P Π) ← FBFD(Ω← {‫
 ‫

 ‫
 } Π P)

end for

(P Π) ← FBFD(Ω Π P)
Return (P Π)

Page 10 of 17

describing the maximum initialization time of the SW-C is added which describes the amount of time needed for the Cold Standby to

produce valid data.

A health status module was added to the AUTOSAR ECU Specification and it is responsible for sending the ECU status to all other

ECUs. This is relayed through the AUTOSAR Communication Service (COM) which is responsible for communicating the health

status to all ECUs. The appropriate mechanisms for COM are put in place by introducing a health message which is broadcasted using

the existing COM API. Several callbacks were added to the AUTOSAR Runtime Environment (RTE). One of them is a callback

function from the COM module regarding the health status of all ECUs. This callback function is responsible for activating any

replicas that reside on this ECU depending on the status of other ECUs and as part of the on-line procedures described in the previous

section.

There are several assumptions regarding offline analysis and synthesis. First of all, it is assumed that all runnables within SW-Cs are

executed periodically within the context of an AUTOSAR Task. Secondly, the runnable to Task Mapping exists before R-FLOW is

used for replication and allocation. Lastly, the ECU description is assumed to be already available as part of the RTE Generation

process. This provides R-FLOW with the description of available resources for task allocation. An example depicting how replication

is done within the System Model is shown in Figure 7. Here, we have three SW-Cs S1, S2, and S3, two AUTOSAR Tasks T1 and T2,

and two ECUs E1 and E2 which are connected through a network. Suppose that R-FLOW decides to replicate S1, giving component

S1. This results in the replication of its runnables R1_S1 and R2_S1, producing R1_S1 and R2_S1 respectively. Given that S1 is

mapped to E2 as per R-FLOW, we now have to re-schedule the Tasks that need to run on the ECUs. In this paper, new Tasks will be

created as mentioned in the previous section. This action can be automated by a tool using predefined rules such as creating a new task

for each replicated runnable. Tasks can contain multiple runnables to capture any explicit ordering present as part of a task schedule

on the original ECU. In this example, a new Task T3 is created that contains the replicated runnables. The new configuration is

depicted in Figure 8.

Figure 7: Example Configuration without Replication

Figure 8: Example Configuration with Replication

Page 11 of 17

IMPLEMENTATION

We developed an experimental platform to evaluate our approach and look at overheads and costs associated with fault-tolerance. A

real automotive platform was necessary to show the complexities involved in adding fault-tolerance to the system. This section

describes the system architecture in detail.

HARDWARE

The hardware architecture was built as part of a testbench as shown in Figure 13. The computational architecture is comprised of five

Softec HCS12X development kits using the MC9S12XDP512 processor from Freescale [7]. The ECUs run at 50Mhz and use a 12V

supply. Daughter boards from Freescale are used for FlexRay connectivity. The ECUs are connected using a dual-channel FlexRay

bus and two Full-Speed CAN networks. One of the five ECUs acts as the system gateway and is connected to a PC using two RS232

channels. This ECU acts as the fault injection module and is also used to collect data from the system for diagnosis and analysis. The

types of faults that can be injected include communication shutdown, shorting of bus channels, shutdown and restart of ECUs, and

injection of faulty network bus messages. These faults can be controlled using a PC interface and data collected by the system are

analyzed at the PC as well.

SOFTWARE

The basic software running on the hardware includes the RTA-OSEK [8] operating system and generated code from SysWeaver [18]

using an AUTOSAR Code Generation module that was added to SysWeaver. The code generated conforms to the AUTOSAR 4.0

specifications and produces the minimum required implementation to produce a working system. All the relevant modules including

the RTE, COM, PDU Router and SW-C supplementary headers are generated. An OIL file for configuration of the RTA-OSEK OS is

also generated for each ECU. This generated code includes the necessary code modifications required as part of the fault-tolerance

support described in the previous section. Integration was added for R-FLOW within the Fault-Tolerance View of SysWeaver to

produce the necessary replicas and SW-C allocation. Code is then generated for every ECU along with a configuration file for the

Gateway ECU. The Freescale CodeWarrior compiler for the HCS12X is then used along with the RTA-OSEK configuration tool to

produce an executable for each ECU. This is done automatically by SysWeaver.

The system model is created within SysWeaver and comprises of SW-Cs that were designed in the tool as well. The Functional View

within SysWeaver comprises of communicating SW-Cs. Each SW-C has the relevant AUTOSAR properties associated with it,

including the information required by R-FLOW. For this paper, we concentrate on Sender-Receiver Communication as the only

communication mechanism between SW-Cs since a chain of communicating SW-Cs constitutes an application flow. The Deployment

View within SysWeaver consists of the hardware configuration including the ECUs and any network buses within the system. Each

ECU has properties associated with it as described in the AUTOSAR ECU Description. A Dynamic View exists which contains

AUTOSAR Tasks, where each AUTOSAR Task contains a Schedule Table of runnables with their respective Task offset and periodic

intervals. Given these properties, R-FLOW is then invoked to produce the required Replicas and Task Allocation. The Fault Tolerance

View in SysWeaver shows the replicas produced along with the type of replication, and the SW-C allocation can be seen in the

Deployment View. Figure 14 shows an example system model in SysWeaver. The figure shows 2 application flows, A & B.

RESULTS

In this section, we evaluate the performance of FBFD relative to BFD, which does not consider the effects of application flows. Then,

we will show the benefits of using R-FLOW on randomly chosen application flows. We analyze the characteristics of these schemes

by varying the number of application flows and the number of SW-Cs in an application flow. Our experiments pick different end-to-

end delays: 500ms, 1000ms, 1500ms, or 2000ms. In order to get the period value for each SW-C within an application flow, we divide

the end-to-end delays by the number of SW-Cs in the flow. Then, the worst-case execution time of each SW-C is randomly chosen

such that the utilization of each SW-C varies between 0% and 30%. The number of application flows is itself varied from 10 to 20,

and the number of SW-Cs in an application flow is varied from 10 to 15 in each experiment. In all our experiments, the

communication cycle length is set at 20ms and each data point is averaged after 500 iterations.

The performance metric used for comparison is the ratio of saved processors which is defined as
 () ()

 ()⁄ ,

where () means the number of required processors when scheme A is used. Higher the value of this metric, better is the

performance of the scheme under consideration.

Page 12 of 17

For R-FLOW, while the same parameter variations above are applied, we also conduct experiments on using only Hot Standbys or

only Cold Standbys for guaranteeing system reliability. We vary the number of tolerated failures from 1 to 4, yielding a total of 2 to 5

copies due to the inclusion of the primary.

Figure 9 and Figure 10 show the number of saved processors when FBFD is used, normalized to the number of processors required by

BFD. Figure 9 depicts the ratio of processors saved when the number of application flows and the end-to-end delay are varied. The

number of SW-Cs in each application is fixed at 10. As seen in Figure 9, FBFD can save a substantial number of processors (up to 45%

processors) when the end-to-end delay is 500ms. FBFD can save more processors when the end-to-end delay is shorter because the

overhead of communication on an application flow represents a larger ratio of the delay when the end-to-end delay is shorter. It can

also be seen that the number of application flows does not affect the performance. This means that the size of an SW-C set does not

play a major role. Figure 10 presents the results of an experiment where the number of SW-Cs in an application flow is varied from 10

to 15. Again, a large number of processors (up to 56% processors) can be saved when the end-to-end delay is 500ms. As shown in

Figure 10, a larger number of stages in an application flow have a greater impact on the performance of this algorithm because of the

bigger impact of communication delays on shorter end-to-end delays.

Figure 9: The ratio of saved processors when we use FBFD under varying application flows and fixed number of SW-Cs per

application flow

Figure 10: The ratio of saved processors when we use FBFD under fixed number of application flows and varying number of SW-

Cs per application flow

Figure 11 and Figure 12 show the percentage of saved processors when R-FLOW is used, normalized to R-BATCH. In each of these

experiments, the number of tolerated processor failures is varied from 0 to 4, where tolerating 0 processor failures is equivalent to

Page 13 of 17

FBFD. The number of applications and the number of SW-Cs in an application flow are both fixed at 10. Figure 11 captures the

results for the experiment when only Hot Standbys are used. As seen in the figure, R-FLOW can save up to about 60% of processors

when the end-to-end delay is 500ms. The end-to-end delay is also the dominant performance factor when Hot Standbys are used. The

rate of improved savings growth is slow because the density (the ratio of computation time to deadline) of a Hot Standby is different

from that of the primary when R-FLOW is utilized. This is not true when R-BATCH is used. Since the size of a Hot Standby for R-

FLOW is larger due to additional communication delays between the primary and the Hot Standby, the number of saved processors is

not increased as more replicas are introduced to tolerate more failures. Figure 12 represents the case where, only Cold Standbys are

used for recovering from processor failures, and has a different trend. The ratio of saved processors does not vary much as the end-to-

end delays of application flows decrease. The reason behind this is that virtual SW-Cs recover several SW-Cs simultaneously and an

SW-C with a higher density can save more. Therefore, the effect of end-to-end delay on the ratio of saved processors is negligible.

In summary, R-FLOW can save a substantial number of processors (up to 60% processors) relative to the required processors by the

R-BATCH scheme.

Figure 11: The ratio of saved processors when we use R-FLOW in order to tolerate varying number of processor failures with Hot

Standby

Figure 12: The ratio of saved processors when we use R-FLOW in order to tolerate varying number of processor failures with Cold

Standby

Page 14 of 17

SUMMARY/CONCLUSIONS

In this paper, we have proposed a processor assignment methodology called R-FLOW for allocating SW-Cs while the end-to-end

delay of application flow and the given reliability requirement are guaranteed. We have defined a new model using an abstraction

called an application flow, which enables timing analysis. We have also described the classification of SW-Cs based on their fault-

tolerance requirements. The classification and application flow models are used within R-FLOW, an application flow-aware SW-C

partitioning algorithm for improving system reliability. Our results have shown that R-FLOW results in a savings of up to 45% of

processors when only primary components are allocated. If replicas are used to enhance reliability, savings of more than 60% of

processors can be achieved as compared to our earlier scheme called R-BATCH, while satisfying the same level of reliability

requirements. Finally, we have described how R-FLOW can be used within the AUTOSAR framework, and have implemented this

algorithm within the SysWeaver tool from Carnegie Mellon resulting in automatic code generation for an AUTOSAR-compliant

system.

As our next steps, we will focus more on improving the on-line performance of R-FLOW by introducing a new protocol, which is

responsible for managing the primary, Hot Standbys, and Cold Standbys of each SW-C. We will also compare our approach to the

methods defined as part of the ISO26262 standard [16] on Functional Safety, and investigate compliance with the requirements and

implementation aspects of the standard.

REFERENCES

1. R.K. Jurgen, X-By-Wire Automotive Systems, SAE International, 2009.

2. “AUTOSAR,” Automotive Open System Architecture.

3. T.X. Mei, M. Shafik, R. Lewis, H. Walilay, M. Whitley, and D. Baker, “Fault Tolerant Actuation for Steer-by-Wire

Applications,” Automotive Electronics, 2007 3rd Institution of Engineering and Technology Conference on, 2007, pp. 1-8.

4. R. Belschner, J. Berwanger, C. Ebner, H. Eisele, S. Fluhrer, T. Forest, T. Fuhrer, F. Hartwich, B. Hedenetz, and R. Hugel,

“FlexRay Requirements Specification,” FlexRay Consortium, Internet: http://www. flexray. com, Version, vol. 2, 2002.

5. D. Pradhan, Fault-tolerant computer system design, Prentice Hall PTR, 1996.

6. AUTOSAR, “Glossary V2.2.0 R4.0 Rev 1,” 2009

7. Freescale, “4310STARTERKIT Product Summary Page.”

8. ETAS, “ETAS - RTA-OSEK - RTA Software Products - Software Products & Systems - Product Search - ETAS Products,”

25T12:36:14+02:00. 2007.

9. J. Kim, K. Lakshmanan, R. Rajkumar, "R-BATCH: Task Partitioning for Fault-tolerant Multiprocessor Real-Time Systems,"

Proceedings of 10th IEEE International Conference on Computer and Information Technology (CIT), 2010

10. K. Lakshmanan, G. Bhatia and R. Rajkumar, “Integrated End-to-End Timing Analysis of Networked AUTOSAR-Compliant

Systems,” Proceedings of the Design, Automation, and Test in Europe (DATE), 2010

11. A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic Concepts and Taxonomy of Dependable and Secure Computing,”

IEEE Transactions on Dependable and Secure Computing, pp. 11-33, 2004.

12. "Progress report No.2 on the accident on 1 June 2009 to the Airbus A330-203 registered F-GZCP operated by Air France flight

AF 447 Rio de Janeiro - Paris," BEA (Bureau d’Enquêtes et d’Analyses pour la sécurité de l’aviation civile), 2009.

13. C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment,” J. ACM, vol.

20, no. 1, pp. 46-61, 1973.

14. P. Hladik, A. Deplanche, S. Faucou, and Y. Trinquet, “Adequacy between AUTOSAR OS specification and real-time scheduling

theory,” in International Symposium on Industrial Embedded Systems (SIES), 2007.

15. D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, “Worst-Case Performance Bounds for Simple One-

Dimensional Packing Algorithms,” SIAM Journal on Computing, vol. 3, no. 4, pp. 299-325, Dec. 1974.

16. International Organization for Standardization, “ISO/DIS 26262 – Road vehicles – Functional safety,” ISO Publications, 2009

17. C. Urmson et al. “Autonomous driving in urban environments: Boss and the urban challenge,” In The DARPA Urban Challenge,

pages 1–59. 2009

18. D. de Niz, G. Bhatia, and R. Rajkumar, “Model-Based Development of Embedded Systems: The SysWeaver Approach”,

Proceedings of the 12
th

 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) 2006

19. N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Hard Real-Time Scheduling: The Deadline-Monotonic

Approach”, Proceedings of the IEEE Workshop on Real-Time Operating Systems and Software, 1991

20. International Electrotechnical Commission, IEC 61508, Functional Safety of Electrical/Electronic/Programmable Electronic

Safety Related Systems, 65A/254/FDIS, IEC:1999.

Page 15 of 17

CONTACT INFORMATION

Junsung Kim, Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Gaurav Bhatia, Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Ragunathan (Raj) Rajkumar, Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Markus Jochim, General Motors Research & Development, Warren, MI, USA

ACKNOWLEDGMENTS

We would like to thank Tom Fuhrman from GM for helpful comments on this paper. We would like to thank Jonas Cleveland for

working on the Power Wheels platform. We would also like to thank ETAS for providing us with evaluation licenses for RTA-OSEK.

DEFINITIONS/ABBREVIATIONS

AUTOSAR

AUTomotive Open System

ARchitecture

BFD Best Fit Decreasing

BSC Best-Effort Recovery SW-C

CAN Controller Area Network

COM Communication Service

DMS Deadline Monotonic Scheduling

ECU Electronic Control Unit

FBFD Flow-BFD

FFD First Fit Decreasing

HSC Hard Recovery SW-C

NFD Next Fit Decreasing

PFD Probability of Failure on Demand

R-BATCH Reliable Bin-packing Algorithm

for Tasks with Cold standby and

Hot standby

R-FLOW Reliable application-FLOW-aware

SW-C partitioning algorithm
RTE Run Time Environment

SBW Steer-by-Wire

SIL Safety Integrity Level

SSC Soft Recovery SW-C

SW-C Software-Component

TMR Triple Modular Redundancy

TOD Transient Overload Density

WFD Worst Fit Decreasing

Page 16 of 17

APPENDIX

Figure 13: Testbench Architecture

Page 17 of 17

Figure 14: SysWeaver System model

