Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks

Junsung Kim,
Björn Andersson†, Dionisio de Niz†, and Raj Rajkumar
Carnegie Mellon University
†Software Engineering Institute | Carnegie Mellon
A motion planning algorithm outputs the best path using
- Parallel threads that calculate the cost of each possible path
- Master thread that picks up the best path

Parallelism is essential for the motion-planning algorithm to meet its deadline.
Motion Planning with Parallelism

Multi-core Processor
- A *quad-core* Intel processor was used.
 - We proposed a scheduling algorithm for this at ICCPS 2013.
- Some *challenging cases* are still present.
 - When a difficult maneuver is necessary (e.g. parking lot)
 - When there are just too many obstacles on our path

Many-core Processor
- Server-class processors are not an option due to space, heating and cost constraints.
- Using a GP-GPU is a good option.
 - Task executes on CPU, suspends, executes on GPU, and then resumes execution on CPU \(\rightarrow\) *self-suspension*

How to deal with tasks that self-suspend?
Our Goals

- **Dealing with tasks that self-suspend**
 - Does not satisfy the assumptions of RMS
- Identify cases in which RMS is still optimal
- Find a utilization bound if possible
- Discover a way to schedule self-suspending tasks when RMS is sub-optimal

Glimpse of the solution

- Assign a priority to each segment of a job
 - Segment: a continuous portion of execution without self-suspension
- Leverage phase enforcement for each segment
Task Model

Model of a self-suspending real-time task

\[\tau_i: \left((C_{i,1}, G_{i,1}, C_{i,2}, \ldots, G_{i,s_i-1}, C_{i,s_i}), T_i \right) \]

- \(s_i \) is the number of task segments for \(\tau_i \).
- \(C_{i,j} \) is the worst-case execution time for the \(j^{th} \) execution segment, and there are \(s_i \) execution segments.
- \(G_{i,j} \) is the worst-case suspension time for the \(j^{th} \) suspension segment, and there are \(s_i - 1 \) suspension segments.
- \(T_i \) is the period of \(\tau_i \), and an implicit deadline is assumed.
Outline

- Motivation, Goals, and Models
- Task-Fixed Priority Scheduling for Self-Suspending Tasks
- Segment-Fixed Priority Scheduling
- Evaluation
- Conclusion and Future Work
Task-Fixed Priority Scheduling for Self-Suspending Tasks

Assumptions

- $G_{i,j} = G_{i,j}^{MAX} = G_{i,j}^{MIN}$
- $\tau_{i,j}$ always runs for $C_{i,j}$.
- No phase enforcement is used.

Glimpse of the results

- The conventional critical instant does not always hold.
- When it does hold, a utilization bound exists.
Failure of L&L Critical Instant

- One self-suspending task and one non-suspending task \(\tau_1: (1, 1, 3), 5 \) and \(\tau_2: (2, 7) \)

\[\tau_1: \quad \tau_2: \]

\(\tau_2 \) misses its deadline at the second job release.

This violates the conventional definition of a critical instant.

It actually depends on which segment of \(\tau_1 \) is released with \(\tau_2 \).
Critical Instant Failure (cont’d)

For a taskset with one self-suspending task τ_1 and one non-suspending task τ_2:
- Critical instant candidates arise when τ_2 arrives at the same time as any of the segments of τ_1
- Pick the worst (paper has the proof)

For a taskset with one self-suspending task τ_1 and many non-suspending tasks:

\[\tau_1: ((1,2\epsilon, 2), 5) \]
\[\tau_2: (\epsilon, 5 + \epsilon) \]
\[\tau_3: (3\epsilon, 5 + 2\epsilon) \]

The critical instant for τ_2 may be different from that of τ_3.

* The paper provides an algorithm to find the critical instant of each task.
When Does RMS Hold Good?

- For a taskset with one self-suspending task and $n - 1$ non-suspending tasks:
 - When $R_1 = C_1 + G_1 < C_i \leq T_1 - R_1$, where $i \leq n$
 - Please refer to the paper for the proof.
 - Then, the utilization bound (UB) for this case is given by

 $$U_{RM-SS}(n, k) = n \left((2 + 2k)\frac{1}{n} - 1 \right) - k$$

 where, $k = \frac{G_1}{T_1}$
 - k lies in $[0, 2^{n-1} - 1]$
 - When $k = 0$, it simply becomes the Liu and Layland bound.
UB with One Self-Suspending Task

\[U_{RM-SS}(n) = n \left((2 + 2k)^{\frac{1}{n}} - 1 \right) - k, \quad 0 \leq k \leq 2^{\frac{1}{n-1}} - 1 \]
Case of Multiple Self-Suspending Tasks

- Need to consider all possible release offsets
- Consider a set of two tasks scheduled with RMS:
 - $\tau_1: ((1,1,1), 5)$
 - $\tau_2: ((2,5,2), 10)$
 - $\tau_{1,2}$ and $\tau_{2,1}$ arrive together

Observation:
There is enough slack, but it is not used well.

Key Idea:
Assign a different priority to each segment.
Multiple Self-Suspending Tasks (cont’d)

- Idea: assign a higher priority to a segment that needs to complete sooner
- Consider a set of two tasks:
 - $\tau_1: (1,1,1), 5$
 - $\tau_2: (2,5,2), 10$
- New priority assignment: $\tau_{2,1} > \tau_{1,1} > \tau_{1,2} > \tau_{2,2}$

- $\tau_{1,2}$ and $\tau_{2,1}$ arrive together
- $\tau_{1,1}$ and $\tau_{2,1}$ arrive together
Outline

- Motivation, Goals, and Models
- Task-Fixed Priority Scheduling for Self-Suspending Tasks
- Segment-Fixed Priority Scheduling
- Evaluation
- Conclusion and Future Work
Segment-Fixed Priority Scheduling

Assumptions
- $G_{i,j}$ lies in $[G_{i,j}^{MIN}, G_{i,j}^{MAX}]$.
- $\tau_{i,j}$ always runs for at most $C_{i,j}$.
- This can be extended to sporadic tasks.

Glimpse of the results
- Segment-fixed priority scheduling
- An exact schedulability analysis based on MILP
- The optimal priority and phase assignment
- Some heuristics
Segment-Fixed Priority Scheduling

- Each segment $\tau_{i,j}$ has its own priority.
- $\tau_{i,j}$ does not arrive before $\phi_{i,j}$.
 - The varying suspension time yields many different phase offsets.
Mixed-Integer Linear Programming

- For an exact schedulability analysis of task-fixed priority scheduling:
 - Find $R_1, R_2,$ and R_3 such that
 \[
 R_1 = C_1
 \]
 \[
 R_2 = C_2 + \left\lceil \frac{R_2}{T_1} \right\rceil C_1
 \]
 \[
 R_3 = C_3 + \left\lceil \frac{R_3}{T_1} \right\rceil C_1 + \left\lceil \frac{R_3}{T_2} \right\rceil C_2
 \]
 \[
 R_1 \leq D_1
 \]
 \[
 R_2 \leq D_2
 \]
 \[
 R_3 \leq D_3
 \]

A traditional response-time test

The taskset is schedulable if a feasible solution exists.
Mixed-Integer Linear Programming

- For an exact schedulability analysis of task-fixed priority scheduling:
 - Find $R_1, R_2, \text{ and } R_3$ such that

 $R_1 = C_1$
 $R_2 = C_2 + I_{2,1} C_1$
 $R_3 = C_3 + I_{3,1} C_1 + I_{3,2} C_2$
 $I_{2,1} = \left\lfloor \frac{R_2}{T_1} \right\rfloor$
 $I_{3,1} = \left\lfloor \frac{R_3}{T_1} \right\rfloor$
 $I_{3,2} = \left\lfloor \frac{R_3}{T_2} \right\rfloor$

 $R_1 \leq D_1$
 $R_2 \leq D_2$
 $R_3 \leq D_3$

The taskset is schedulable if a feasible solution exists.
Mixed-Integer Linear Programming

- For an exact schedulability analysis of task-fixed priority scheduling:
 - Find R_1, R_2, and R_3 such that

 \[
 \begin{align*}
 R_1 &= C_1 \\
 R_2 &= C_2 + I_{2,1}C_1 \\
 R_3 &= C_3 + I_{3,1}C_1 + I_{3,2}C_2 \\
 \end{align*}
 \]

 \[
 \begin{align*}
 I_{2,1}T_1 - T_1 < R_2 &\leq I_{2,1}T_1 \\
 I_{3,1}T_1 - T_1 < R_3 &\leq I_{3,1}T_1 \\
 I_{3,2}T_2 - T_2 < R_3 &\leq I_{3,2}T_2 \\
 \end{align*}
 \]

 $I_{2,1}$, $I_{3,1}$, and $I_{3,2}$ are integers.

 $R_1 \leq D_1$
 $R_2 \leq D_2$
 $R_3 \leq D_3$

The taskset is schedulable if a feasible solution exists.
Mixed-Integer Linear Programming

- For an exact schedulability analysis of task-fixed priority scheduling:
 - Find R_1, R_2, and R_3 such that

 $R_1 = C_1$
 $R_2 = C_2 + I_{2,1}C_1$
 $R_3 = C_3 + I_{3,1}C_1 + I_{3,2}C_2$
 $I_{2,1}T_1 - T_1 \leq R_2 \leq I_{2,1}T_1$
 $I_{3,1}T_1 - T_1 \leq R_3 \leq I_{3,1}T_1$
 $I_{3,2}T_2 - T_2 \leq R_3 \leq I_{3,2}T_2$
 $R_1 \leq D_1$
 $R_2 \leq D_2$
 $R_3 \leq D_3$

 Changing $<$ to \leq does not affect the feasibility.
 (See the paper)

The taskset is schedulable if a feasible solution exists.
Mixed-Integer Linear Programming

For an exact schedulability analysis of task-fixed priority scheduling:

- Find $R_1, R_2,$ and R_3 such that

 $R_1 = C_1$
 $R_2 = C_2 + I_{2,1} C_1$
 $R_3 = C_3 + I_{3,1} C_1 + I_{3,2} C_2$
 $I_{2,1} T_1 - T_1 \leq R_2 \leq I_{2,1} T_1$
 $I_{3,1} T_1 - T_1 \leq R_3 \leq I_{3,1} T_1$
 $I_{3,2} T_2 - T_2 \leq R_3 \leq I_{3,2} T_2$
 $R_1 \leq D_1$
 $R_2 \leq D_2$
 $R_3 \leq D_3$

This is linear, and an MILP problem.

The taskset is schedulable if a feasible solution exists.
MILP for Priority Assignment

- Introducing a few parameters for priority assignment
 - Find $R_1, R_2, R_3, x_{1,2}, x_{1,3}, x_{2,1}, x_{2,3}, x_{3,1},$ and $x_{3,2}$ such that

 \[
 R_1 = C_1 + \left[\frac{R_1}{T_2}\right] C_2 x_{1,2} + \left[\frac{R_1}{T_3}\right] C_3 x_{1,3} \\
 R_2 = C_2 + \left[\frac{R_2}{T_1}\right] C_1 x_{2,1} + \left[\frac{R_2}{T_3}\right] C_3 x_{2,3} \\
 R_3 = C_3 + \left[\frac{R_3}{T_1}\right] C_1 x_{3,1} + \left[\frac{R_3}{T_2}\right] C_2 x_{3,2} \\
 \]

 - $R_1 \leq D_1$
 - $R_2 \leq D_2$
 - $R_3 \leq D_3$

- $x_{i,j}$ is a binary variable, and it becomes 1 if τ_j has higher priority than the priority of τ_i.
 - When $x_{i,j}$ is given, this can be used to check the schedulability.

- The phase assignment can be found using a similar approach.
Heuristics for Priority and Phase Assignment to Task Segments

- **Idea**: assign a deadline to a task segment such that the Deadline-Monotonic policy can be used
- **Four heuristics that assign a deadline to a segment:**
 - **ED (Equal Density)**: Assign to $\tau_{i,j}$ a segment deadline so that all segment densities for τ_i are same.
 - **MTD (Minimize Total Density)**: Assign to $\tau_{i,j}$ a segment deadline such that the total density for τ_i is minimized.
 - **ES (Equal Slack)**: Assign to $\tau_{i,j}$ a segment deadline such that $D_{i,1} - C_{i,1} = D_{i,2} - C_{i,2} = \cdots = D_{i,s_i} - C_{i,s_i}$.
 - **PS (Proportional Slack)**: Assign to $\tau_{i,j}$ a segment deadline such that $D_{i,j} - C_{i,j} : D_{i,j+1} - C_{i,j+1} :: U_{i,j} : U_{i,j+1}$.
Outline

- Motivation, Goals, and Models
- Task-Fixed Priority Scheduling for Self-Suspending Tasks
- Segment-Fixed Priority Scheduling
- Evaluation
- Conclusion and Future Work
Evaluation Parameters

- Generated 100 tasksets per datapoint such that
 - The number of tasks varies from 2 to 16
 - The total utilization of each taskset varies from 0.1 to 1
 - The period of each task is uniformly distributed between 10 and 100
 - The maximum value of $\frac{G_i}{T_i}$ is either 0.1 or 0.6
 - The number of segments is set to 2
 - We assume $D_i = T_i$
Evaluation Parameters (cont’d)

- Techniques compared:
 - **OPT**: Exact schedulability analysis based on MILP
 - **RM**: Rate-Monotonic
 - **ES**: Equal Slack
 - **ED**: Equal Density
 - **MTD**: Minimize Total Density
 - **PS**: Proportional Slack
When $\max_i \frac{G_i}{T_i} \leq 0.1$

- All heuristics perform better than RM.
- ED performs the best among all techniques.
- The performance difference between OPT and ED gets larger as the total taskset utilization becomes larger.
When $\max_i G_i / T_i \leq 0.6$

\[n = 2 \]

\[n = 8 \]

- As the suspension time becomes larger, it is difficult for tasks to meet their deadlines (due to tight constraints) regardless of the amount of CPU idle time.
Related Work

- Scheduling self-suspending tasks with task-fixed priority scheduling is **NP-hard** in the strong sense. [Ridouard 04]

- Other contributions

<table>
<thead>
<tr>
<th></th>
<th>Soft Real-time</th>
<th>Hard Real-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspension-agnostic</td>
<td>[Elliott 12]</td>
<td>[Gai 03]</td>
</tr>
<tr>
<td>Suspension-aware</td>
<td>[Liu 09]</td>
<td>[Rajkumar 91]</td>
</tr>
<tr>
<td></td>
<td>[Liu 12]</td>
<td>[Gai 03]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Bletsas 05]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Lakshmanan 10]</td>
</tr>
</tbody>
</table>
Conclusions and Future Work

- Dealing with tasks that self-suspend
 - Determined a new *critical instant* when there is one self-suspending task and multiple non-suspending tasks.
 - Derived a *utilization bound* when RMS is still optimal.
 - Proposed *segment-fixed priority scheduling* (SFPS).
 - Performed *exact schedulability* analysis for SFPS.
 - Gave an *optimal configuration* for priority and phase offset.
 - Four practical *heuristics* were proposed and evaluated.
 - Deadlines that lead to equal density of segments do best.

- Future work
 - Multi-core processing
Thank you and Questions?