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Abstract

Energy management is becoming an increasingly im-

portant problem in application domains ranging from

embedded devices to data centers. In many such sys-

tems, multi-core processors are projected as a promis-

ing technology to achieve improved performance with a

lower power envelope. Managing the application power

consumption under timing constraints poses significant

challenges in these emerging platforms. In this paper,

we study the energy-efficient scheduling of periodic real-

time tasks with implicit deadlines on chip multi-core

processors (CMPs). We specifically consider processors

with a single voltage and clock frequency domain, such as

the state-of-the-art embedded multi-core NVIDIA Tegra 2

processor and enterprise-class processors such as Intel’s

Itanium 2, i5, i7 and IBM’s Power 6 and Power 7

series. The major contributions of this work are (i)

we prove that Worst-Fit-Decreasing (WFD) task parti-

tioning when Rate-Monotonic Scheduling (RMS) is used

has an approximation ratio of 1.71 for the problem

of minimizing the schedulable operating frequency with

partitioned fixed-priority scheduling, (ii) we illustrate

the major shortcoming of WFD with RMS resulting

from not considering task periods during allocation, and

(iii) we propose a Single-clock domain multi-processor

Frequency Assignment Algorithm (SFAA) that determines

a globally energy-efficient frequency while including task

period relationships. Our evaluation results show that

SFAA provides significant energy gains when compared

to WFD. In fact SFAA is shown to save up to 55% more

power compared to WFD for an octa-core processor.

1. Introduction

Chip Multi-Processors (CMPs) that offer multiple pro-

cessing cores on a single chip have quickly become

prevalent. Major chip makers now have CMPs with 2, 4

or 8 cores [9, 16, 15, 22, 31]. Further, extensive research

is underway to build chips with potentially hundreds of

cores or many-core systems [3, 30]. Energy management

has been a very active research area in the recent past

and one of the main motivating factors leading to CMP

architectures was the unsustainable ever-increasing fre-

quency and power density trends of traditional single-

core architectures. As a result, CMPs come equipped with

Dynamic Voltage and Frequency Scaling (DVFS) with

multiple operating point steps. The total processor energy

consumption consists of two components: dynamic, and

static power. The first relates to the power that is dissi-

pated due to switching activity, while the second is due

to leakage current. A common way of reducing dynamic

power is to use Dynamic Voltage Frequency Scaling

(DVFS) [40]. DVFS changes the processor supply voltage

and the clock frequency simultaneously, thereby reducing

the energy consumption. A method that has been sug-

gested for reducing the static power consumption is to

shutoff the processor cores when idle [18, 24, 19, 33]. For

such a mechanism to be employed, dynamic shutdown

of processor cores must be supported by the hardware.

The energy-efficient scheduling problem in hard real-time

systems with DVFS and/or dynamic shutdown-capable

processors is to minimize energy consumption while

ensuring that all the real-time tasks meet their deadlines.

Several papers in the recent past have proposed DVFS-

based solutions for real-time embedded systems running

on conventional multi-processor platforms where each

processor is located on a separate chip [1, 12, 7, 39].

These studies identify two main dimensions of the prob-

lem as task-to-CPU allocation and run-time voltage scal-

ing on individual CPUs [1, 39]. Yet, the emerging CMP

platforms have a number of unique traits which make

the problem different from conventional multi-processor

platforms. While it is natural to have different voltage

levels per CPU (per-CPU DVFS capability) in a multi-

processor system, the tight coupling of cores on a single

chip (CMP) implies that the per-core DVFS feature would

come with severe additional circuit complexity, stability,

and power delivery problems [3, 13, 30]. In fact, in the

state of the art commercial CMPs the processing cores

share a common voltage level. A recent study [13], based

on detailed VLSI circuit simulations, suggests that the
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potential energy gains of per-core DVFS are likely to

remain too modest for justifying the complicated designs.

For the next-generation many-core systems, it is likely

that only a small number of clusters/blocks each with

several cores and independent voltage regulators will be

feasible [3]. Independent and effective management of

such clusters or in other words voltage islands would be

the ultimate objective in these next-generation systems

[3, 13, 32].

The focus of this paper is on energy-efficient par-

titioned fixed-priority scheduling of periodic real-time

implicit-deadline tasks on multi-core processors with a

common voltage and clock domain. Although partitioned

multi-core processor real-time scheduling is known to be

NP-hard in the strong sense [10, 20], simple and effective

partitioning heuristics are known to have reasonable

average-case performance in practice [25, 27]. In fact,

the partitioned approach is arguably more common due to

its simplicity and ease of implementation. Unfortunately,

the problem of task-partitioning to minimize energy con-

sumption is NP-hard [1, 12] and in particular the voltage

island model poses a number of challenges that have only

very recently started to attract attention [35, 38]. Under

the global voltage/frequency constraint, the core with the

maximum load could be the main deciding factor in the

overall CMP energy consumption [35, 38]. This suggests

the importance of load balancing. It has also been proven

that the total energy consumption of the multi-core pro-

cessor is minimized under EDF scheduling in the case

that the workload is perfectly balanced across the pro-

cessors [12]. The Worst-Fit-Decreasing (WFD) heuristic

can achieve load balancing, and thereby save energy. In

this paper, we first prove a 1.71 approximation ratio for

WFD with Rate Monotonic Scheduling (RMS) for the

problem of minimizing schedulable operating frequency

in paritioned fixed-priority scheduling. Then we show

that load balancing does not always lead to lowering

operating frequency (and hence the energy consumption)

for CMP systems using RMS. Subsequently, we propose

a partitioned Single-clock multiprocessor Frequency As-

signment Algorithm (SFAA) that is targeted at reducing

the global operating frequency. Through experimental

evaluation we show that SFAA performs significantly

better than WFD in terms of power consumption. We use

data obtained from measurements of an actual processor

(NVIDIA’s Tegra 2 processor) to determine the power

model used in our evaluation.

The rest of this paper is organized as follows. We

summarize prior research related to this work in Section

II. In Section III, we describe the processor and power

model that we use in this paper. In Section IV, we

prove the approximation ratio for WFD under RMS and

go on to show that WFD may not always provide the

globally energy-efficient operating frequency. We then

propose our SFAA algorithm Section V. In Section VI

we present our evaluation results and finally in Section

VII we provide our concluding remarks.

2. Related Work

Energy-aware scheduling for real-time systems on

DVFS platforms has been extensively studied [6]. We

now briefly describe prior research related to our work.

A theoretical exploration of DVFS systems for real-

time jobs was first given by Yao, Demers and Shenker

[40] by considering a set of aperiodic jobs on an ideal

processor, in which each job is characterized by its

release time, deadline, and execution CPU cycles. All

jobs have the same power consumption function. An

off-line scheduling algorithm was proposed to minimize

the energy consumption of task executions. For periodic

real-time tasks on an ideal processor, Aydin et. al. [12]

showed that an optimal schedule would execute all the

tasks at a common speed to fully utilize the processor

when all the tasks have the same convex (and increasing)

power consumption function. Saewong and Rajkumar

[34] considered rate-monotonic task scheduling and de-

termined the minimum constant speed for all tasks to

satisfy the schedulability condition of Rate-Monotonic

Scheduling (RMS). This scheme is called Sys-Clock.

They also discussed the energy effects of quantization

due to available processor operating frequencies.

Research studies on energy management for multi-

processor real-time systems are typically based on inde-

pendent DVFS capabilities of individual processors. The

multi-processor energy-aware task allocation for RMS-

based systems is known to be NP-Hard [1] and heuristic

algorithms were proposed in [1, 12] to exploit the well-

known bin-packing algorithms for task partitioning. In

[1], the authors conclude that Time-Demand Analysis-

based admission control combined with the Sys-Clock

speed assignment scheme has the best overall perfor-

mance in both off-line and online settings, at the cost

of pseduo-polynomial time complexity. Moreover, in off-

line settings, the Worst-Fit heuristic has the best overall

performance among partitioning heuristics. In this paper,

we establish a 1.71 approximation ratio for Worst-Fit

Decreasing with Rate-Monotonic Scheduling under Sys-

Clock. This result establishes a theoretical bound on the

performance of the Worst-Fit Decreasing heuristic for

the energy-efficient partitioned fixed-priority scheduling

problem.

Energy management of real-time tasks on CMP plat-

forms under the global voltage/frequency constraint has

been of interest to the research community recently.

In [38], the authors showed that problem is NP-hard

considering frame-based systems and provided a 2.371-

approximation scheme. In [2], the authors proposed a

power-aware scheduler for multicore systems executing
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soft real-time workload. In [35], the authors considered

the problem of energy-efficient scheduling for periodic

hard real-time tasks on CMP systems. The authors pro-

posed a scheme to re-partition tasks at run-time by

resorting to task migrations, so as to create more balanced

schedules that adapt to dynamic workload variability.

Further, they also proposed a dynamic core scaling al-

gorithm adjusting at run-time the number of active cores

under the assumption that transitions between off and

active states can be done instantaneously and with no ad-

ditional overheads. However, in practice such transitions

are rarely attractive or possible for periodic real-time

applications. Finally, the overhead of frequent task mi-

grations may be a concern in practice. In [8], the authors

provide a framework for minimizing energy on CMP

systems under EDF scheduling. The framework consists

of a static and a dynamic phase. In the static phase a

subset of cores are selected such that the workload can

be completed while meeting their deadlines and a task-

to-core allocation is performed as well. The dynamic

phase involves managing the selected cores at run-time

by exploiting early-completion of task executions. While

keeping certain cores of the processor switched off might

be useful for reducing static power consumption, not

all multi-core processors provide such an option [37].

Exploiting early-completion of tasks could be useful in

processors with cores having independent-DVFS capabil-

ity. However, in case of common voltage/clock domain

processors with statically allocated tasks such exploita-

tion may not be effective as it requires that tasks assigned

to different cores complete early together. In [21], a

polynomial-time complexity algorithm based on binary

search to minimize the energy consumption of a multi-

core system is proposed. There has also been work that

use DVFS techniques to reduce the operating temperature

of the processor [23, 5, 4].

3. Task and Power Model

3.1. Task Model

We consider a set of independent periodic hard real-

time tasks Γ = {τ1, τ2, ..., τn}, where n is the number of

tasks. Each task τi is given by {Ci, Ti, Di}, where Ci is

the worst-case execution time at a maximum processor

frequency of fmax, Ti is the period, and Di is the relative

deadline from arrival time. We assume in this paper

that Ti = Di resulting in implicit deadlines. The clock

frequency f we refer throughout the paper is a relative

frequency normalized to fmax. Hence, f will be less than

or equal to 1, since f ≤ fmax. The worst-case execution

time of task τi when running on a processor at frequency

f is given by ci(f) = Ci/f . We consider fixed-priority

preemptive scheduling; the preemption overheads can be

incorporated in Ci if necessary. The total utilization of

the task set at fmax is given by Utot =
∑n
i=1 Ci/Ti.

Note that a necessary but not a sufficient condition

for feasibility on a system of m identical multi-core

processors is to have a task set whose total utilization

does not exceed the total computing capacity. Hence, we

assume that the condition Utot ≤ m holds throughout the

paper. A task is schedulable iff all its instances complete

no later than their deadlines. A task set is schedulable

iff all its tasks are schedulable. The utilization bound

denoted by Ubound is the utilization such that all task sets

with a utilization that is lower than or equal to Ubound are

schedulable. We adopt a partitioned approach to multi-

core processor scheduling. Tasks are statically assigned

to processors. On each processor, the Rate-Monotonic

Scheduling (RMS) policy is adopted i.e. tasks are as-

signed fixed priorities that are inversely proportional to

their periods.

3.2. Processor and Power Model

We consider a homogeneous multi-core processor plat-

form M with m processors {p1, ..., pm}. The processor

operating frequency can be anywhere between fmin and

fmax. We also assume that all the processors are ‘‘fed”

the same clock signal which reflects many current proces-

sors such as NVIDIA’s Tegra 2 processor, and will likely

remain relevant in modern many-core processors where

each cluster of cores will still be present in the same

voltage/frequency domain since it is often prohibitively

expensive to assign each core its own voltage island. We

call such processors as Single-Clock domain Multi Pro-

cessors (SCMP). In this paper, we restrict our attention to

the static frequency assignment problem, where the entire

processor is statically assigned an operating frequency

so as to ensure the schedulability of all tasks in the

system. Runtime frequency scaling is not considered as

it is requires coordinated scaling across all cores within

a single domain and this could incur high overhead.

As discussed in [34], the dynamic power consumption

function can be modelled as a function proportional to

fα, where α is a constant. The leakage power of each

of the processor is a non-negative constant, denoted

by β2 here. Then, the power consumption function is

(β1f
α+β2). In order to obtain the values of the constants

in the power consumption function, we measured the

power consumption for the NVIDIA Tegra 2 processor

[37] used in the Motorola Xoom platform [17]. The Tegra

2 processor has two cores and seven effective operating

points. The operating points are shown in Table 1. Before

beginning a measurement we first charge the device to

its maximum voltage level. At each operating-point we

run CPU-bound busy-loops for 15 minutes. We obtain

the battery charge level before and after the experiment.

In this manner the amount of battery consumption at

a particular operating point can be obtained. Ten such
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Operating Point Frequency (MHz) Voltage (mV)

1 312 750

2 456 825

3 608 900

4 760 975

5 816 1000

6 912 1050

7 1000 1100

Table 1: Tegra 2 processor operating points

400 500 600 700 800 900 1000
1

2

3

4

5

6

7
x 10

4

Frequency (MHz)

B
a
tt

e
ry

D
is

c
h
a
rg

e
(u

A
h
)

 

 

1 Core

2 Cores

Figure 1: Battery consumption at each of the operating

points of the Tegra 2 processor

measurements are taken for each operating point and

averaged. It is to be noted that we set the Xoom platform

to Airplane mode, close all running applications and

services, and switch off the display when conducting the

experiment. The measurement results are shown in Figure

1.

We have estimated the constants from the actual data

to be α = 3.94565, β1 = 3.89462 × 10−26 and

β2 = 0.8453 × 10−9. Figure 2 shows the actual battery

consumption data and estimated data for a single core on

the Tegra2 processor.
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Figure 2: The actual battery discharge and estimated

discharge of the Tegra 2 processor.

4. Global Voltage/Frequency constrained

CMP Load Balancing under RMS

In this paper, we are concerned with the static

frequency assignment problem, where an energy-

minimizing operating frequency is assigned to the pro-

cessor using the uniform slowdown technique such that

all tasks meet their deadlines. The uniform slowdown

technique assigns an unique operating frequency to all

the tasks on a processor such that the new effective

utilization does not exceed the utilization bound obtained

by the admission control algorithm. As such, it is easy to

see that this technique can be used in conjunction with

any utilization bound-based admission control algorithm.

For example, suppose that, two tasks are assigned to

processor pi with total utilization Ui = 0.414 in a

feasible partition. If the Liu-Layland [26] schedulability

bound n(21/n − 1) is used with n = 2, then the

processor can be slowed down till the utilization of

the processor reaches 0.828. Hence the slowdown fac-

tor (SF) is = 2, i.e. the energy-minimizing operating

frequency fSF should be no lower than 0.5fmax. Sys-

Clock [34], a time-demand analysis-based speed assign-

ment technique, can be used to improve energy savings.

For SCMP systems with a single clock domain, the

operating frequency after slow-down should be chosen

as fSF (M) = max(fSF1, ..., fSFm), where m is the

total number of processors. Dynamic DVFS techniques

[28, 29, 41] and those requiring operating frequency

change between task context-switches are more suitable

for Multi-Clock Multi-Processor (MCMP) systems, i.e.

systems where each processor or groups of processors

have independent clocks. Also, uniform slow-down tech-

nique and Sys-Clock are appropriate for SCMP systems

and high DVFS-overhead processors as it does not require

any change in the clock-frequency during run-time.

From Figure 1 we see that lowering the operating

frequency will result in lowering the energy consumption.

The problem of minimizing energy consumption using

task partitioning in CMPs can be formally stated as

follows:

Given a set Γ of periodic hard real-time tasks and

a set M of identical processor-cores with a common

voltage/frequency domain, find a task partition and

compute the global operating frequency for all the

processor-cores such that:

1. the workload can be scheduled by RMS in a

feasible manner, and

2. the total energy consumption on all processors

p1, ..., pm is minimum among all feasible partitions.

The above problem is NP-hard, since it is a more

general form of the feasibility problem in partitioned
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multi-core processor scheduling which is known to be

NP-hard in the strong sense. In fact, even when the task

set is known to be trivially schedulable, the problem

remains NP-hard i.e. although any partitioning would

yield a feasible schedule, but computing the one with

minimum energy consumption is still intractable [25].

Definition 1. Given a normalized frequency of fmax = 1,

a processor is said to have a slowdown factor of k if it

is run at a frequency of 1/k and all the tasks on that

processor continue to meet their deadlines.

Hence a scheduling algorithm that achieves a larger

slowdown factor on a given task-set results in greater

energy savings.

Proposition 1. For the static frequency assignment prob-

lem with a single clock frequency, an ideal energy-aware

task partitioning algorithm is one that partitions a given

task-set Γ with utilization U (at fmax = 1) onto m
processors such that all the processors are fully utilized at

a slowdown factor of (m/U), and all the tasks continue

to meet their deadlines.

Proof: Suppose there is an algorithm A that achieves

a slowdown factor 1
fA

> (m/U) for taskset τ . In this

case, over any interval of time t, the m processors

executing at frequency fA < (U/m) have less than (Ut)
cycles. However, the taskset Γ requires (Ut) cycles, and

therefore tasks in Γ should miss their deadlines. Hence,

by contradiction, no such algorithm A can exist.

Remark 1. Based on Proposition 1, a task partition-

ing algorithm that achieves a minimum per-processor

utilization bound of UB on all processors can achieve

a slowdown factor of UB(m/U) for a taskset with

utilization U (at fmax = 1) on m processors, since it

can utilize all the processors up to UB without missing

deadlines at frequency (U/m)(1/UB).

The convex relationship between the CPU speed

and power consumption suggests load-balancing tech-

niques for energy-aware partitioning across DVFS-

enabled multi-core processors. It has been shown that

if a perfectly balanced partition exists and if Earliest

Deadline First (EDF), is used, then it is provably optimal

[12]. Among task allocation heuristics, the Worst-Fit

Decreasing (WFD) algorithm is known to typically yield

well-balanced partitions where the maximum load on

any core is small. In fact, the combination of WFD

with Sys-Clock has been found to perform well in terms

of energy savings [12]. Assuming that the tasks are

already sorted in non-increasing order of their utilization,

WFD allocates tasks one by one to the core with the

least load at a time. For this specific problem, WFD is

equivalent to the well-known List Scheduling Algorithm

(LST) where independent tasks each with a given size in

the range [0,1] are partitioned to m CPUs each with unit

capacity, with the objective of reducing the maximum

size allocated to any core. In our case, the capacity of

a bin corresponds to the utilization bound of a task-set

assigned to a processor and the size of tasks corresponds

to their individual utilization. The result in [11] implies

that the maximum load among all cores generated by LST

(and equivalently WFD in case of EDF or RMS with only

harmonic tasks) is no more than 4
3 − 1

3m times that of

the optimal. We see that as m → ∞, the ratio becomes
4
3 , which implies that WFD has an approximation ratio

of 4
3 when used with EDF.

The approximation ratio of an algorithm is the ratio

between the result obtained by the algorithm and that

obtained by the optimal algorithm. An algorithm with

approximation ratio k is called a k-approximation al-

gorithm. In our case we see that if the optimal algo-

rithm partitions the task set such that resulting operating

frequency is f then WFD will result in an operating

frequency of 4
3f when used with EDF.

Proposition 2. The Worst-Fit Decreasing (WFD) heuris-

tic for partitioning independent tasks onto a multi-

processor under Rate Monotonic Scheduling (RMS) has

an approximation ratio of at most 4
3 ln2 .

Proof: This upper bound can be deduced as follows.

The least upper utilization bound for a set of n schedu-

lable tasks is given by Ubound(n) = n(21/n − 1). As

n → ∞ we know that Ubound is ln2. Consider that the

scenario that the processor frequency determined using

optimal allocation is f on m processors. Under the worst-

case scenario, the WFD heuristic may result in a packing

with per-processor utilization at 4
3− 1

3m times the optimal

with each processor core being subject to the utilization

bound of n(21/n − 1), while the optimal could perfectly

balance the load on each processor. We see that the

maximum clock frequency in this scenario will be:

{ 1
n(2(1/n)−1)

} × { 4
3 − 1

3m}.

We see that this function is maximized as n→ ∞ and

m→ ∞, where the above expression becomes 1
ln2 × 4

3 =
1.92.

We will now tighten this bound to 1.71 in Theorem 1.

Theorem 1. The approximation ratio of the Worst-

Fit Decreasing (WFD) Partitioning heuristic for Rate-

Monotonic Scheduling (RMS) of independent tasks onto

a multi-processor platform is at most 1.71.

Proof: Assume a set of m processors and n inde-

pendent tasks that need to be partitioned. Without loss of

generality, assume that the operating frequency resulting

from WFD with RMS is 1.0 (the maximum operating

frequency). We need to establish a lower bound f on

the operating frequency required by an optimal algorithm

to guarantee deadlines, in order to provide an upper

bound on the approximation ratio 1
f resulting from the
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combination of WFD with RMS.

Let us say that the processor frequency of 1.0 is first

reached by WFD with RMS when a task τi of utilization

ui = u is assigned to processor pj . Hence, we can restrict

our attention to a subset of tasks with utilization greater

than or equal to u, since adding additional tasks with

utilization lesser than u cannot decrease the frequency

required by the optimal algorithm (or increase the ap-

proximation ratio).

We now consider three exhaustive cases for pj :
Case 1: Processor pj is empty

In this scenario, task τi would be assigned to an empty

processor under WFD and for the processor frequency

to reach 1.0 task τi itself should have an utilization of

1.0. The optimal algorithm will also have to choose a

frequency of 1.0 on the processor that τi is assigned.

Therefore, the approximation ratio will be 1.0, which is

less than 1.71.

Case 2: Processor pj has only one task

Consider that there is exactly one task with utilization

η already in the processor pj to which task τi is allocated

under WFD with RMS.

(u+ η) ≥ Ubound(2) = 82.8%
The two task utilization bound of 2(

√
2−1) should be

exceeded so that an operating frequency of at least 1.0
will be required to meet the deadlines of all the tasks (if

(u+ η) < Ubound then a lower operating frequency than

1.0 will be sufficient).

Due to the worst-fit allocation, all the remaining pro-

cessors (other than pj) have an utilization greater than

or equal to η. The set of tasks Γ can be considered

to be union of two sets Γ1 = {τk|uk ≥ η} and

Γ2 = {τl|η > ul ≥ u}. We see that task τi ∈ Γ2.

As τi is being added to the processor pj of utilization

η with a single task, each of the tasks in Γ1 should be by

themselves on their processors. Let the number of tasks in

Γ1 be α. This implies that α processors would be taken

by tasks in Γ1 and the remaining (m − α) processors

would be occupied by tasks in Γ2, where α denotes the

total number of tasks in Γ1. Also the remaining tasks in

Γ2 will be assigned to the remaining (m−α) processors

such that at least two tasks are allocated together. This is

due to the fact that if one of these tasks were on a separate

processor its utilization would have been lesser than η
and would have been chosen as the candidate processor

for allocating τi under WFD.

We have established that α processors would have a

task each from Γ1 and the remaining (m−α) processors

would have at least two tasks each from Γ2. In that case

the optimal algorithm would have to either pack τi with

either one of the processors with a task each of utilization

at least η or with at least two tasks of utilization greater

than or equal to u. We see that if the optimal algorithm

picks the processor having one task with utilization η then

it does not do better than WFD by a factor of 1
0.828 , which

is less than 1.71. Hence, we are only concerned with the

set of processors having at least two tasks already packed

onto them.

Case 3: Processor pj has at least two tasks

Consider the scenario that there are at least two tasks

in processor pj where τi is considered for allocation. Let

the utilization of processor pj be η before allocating task

τi. This implies that each of the other m − 1 processor

cores have at least a utilization of η.

After assigning task τi to pj , the operating frequency

of pj goes to 1.0 for that processor and thereby for all the

processors is 1.0 as they are all within the same clock-

frequency domain.

This implies,

Uj ≥ U
pj

bound =⇒ (η + u) ≥ U
pj

bound (1)

We can effectively ignore all processors (say α pro-

cessors) with a single task, since these tasks have a

utilization greater than η, and adding any other task

with such tasks in the optimal allocation will result in

a utilization of (η + u) with an operating frequency of

at least U
pj

bound ≥ ln2 ≈ 0.69 and approximation ratio

lesser than 1.44.

We know from [36] that the utilization bound for three

tasks, where one of the task has utilization u is given by:

2{{ 2

1 + u
}1/2 − 1} + u (2)

From equations 1 and 2, we have,

η + u ≥ (2{{ 2

1 + u
}1/2 − 1} + u)

=⇒ η ≥ (2{{ 2

1 + u
}1/2 − 1)}

When there are at least two tasks per processor core

before the allocation of τi, we have at least 2(m−α)+1
tasks to be allocated on (m−α) processors. By Pigeon-

Hole Principle, even the optimal allocation will still have

to pack three tasks on to at least one processor (say pk).

Then the operating frequency f of pk will be at least

3u since each task has an utilization of at least u. This

implies that the optimal processor will have to choose a

frequency that is max(η, 3u). This operating frequency

is minimized when η = 3u. Hence we have,

3u = (2{{ 2

1 + u
}1/2 − 1)} =⇒ u ≈ 0.195584 (3)

Thus we have f ≥ 3u =⇒ f ≥ 0.586752. Hence

the ratio of the operating frequency when using WFD to

that of using optimal is 1/f ≤ 1.71 Also if more than

three tasks are allocated to processor pk, then the ratio

between WFD and the optimal will only be smaller. For

example if there are four tasks then we have,

4u = (3{{ 2

1 + u
}1/3 − 1)} =⇒ u ≈ 0.15 (4)
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and the ratio will be 1.64. The ratio will become one

when there are infinite number of tasks. The worst case

happens when have three tasks.

5. Global Operating Frequency Minimiza-

tion

For RMS, load-balancing does not always result in

lowering energy consumption. This is illustrated by the

following example.

5.1. Motivating Example

Consider the case where four tasks τ1 = (4, 10, 10),
τ2 = (6, 14, 14), τ3 = (4, 10, 10) and τ4 = (6, 14, 14)
need to be allocated on two processors p1 and p2 (where

the execution times are assumed to be obtained at the

maximum operating frequency of fmax = 1). Let us

assume an ideal processor with infinite frequency gran-

ularity, where the processor can operate at any operat-

ing frequency from 0 to 1. We also assume that rate-

monotonic scheduling is used on each processor.

Consider the static frequency assignment problem in

this setup, where a single clock frequency fSF needs

to be assigned for all the processors, and no run-time

frequency changes are allowed. Consider two different

task allocations:

Case 1: Tasks τ1 and τ2 are assigned to p1, and tasks

τ3 and τ4 are assigned to p2.

The critical scheduling instant, when jobs of all the

tasks are released simultaneously on all the processors, is

shown in Figure 3a. Observe that between the release of

tasks τ1 and τ2 on p1 and the completion of the second

instance of τ1, there are no idle cycles. Similarly on p2,

until the completion of the second instance of τ3 there are

no idle cycles. This implies that slowing down the proces-

sor will result in the tasks missing their deadlines. Hence

although the utilizations of the processors are less than

1.0 and equal (≈ 0.83), the operating frequency should

be set as 1.0 i.e. fSF = fmax = 1.0, since decreasing

the frequency would increase the execution times of each

task causing the tasks to miss their deadlines.

Case 2: Tasks τ1 and τ3 are assigned to p1, while

tasks τ2 and τ4 are assigned to p2.

The critical scheduling instant for this case is shown

in Figure 3b. Observe the idle cycles between the

completion of the tasks and their next arrival. These

idle cycles can be used for slowing down the processor.

Hence, although the utilizations are not balanced,

processor p1 can be slowed down to 0.8f and processor

p2 can be slowed down to 0.86f respectively. In a

system with a single clock domain, both the processors

can operate at a clock frequency fSF = 0.86 and all the

tasks will continue to meet their deadlines.

The above example illustrates that balancing the uti-

lization may not always give the energy-minimizing task

partition and that the periods of tasks have an important

role to play as well. While WFD only uses the task

utilization for partitioning, we see that a partitioning

algorithm that considers task periods as well is required.

5.2. Static Frequency Assignment Algorithm

(SFAA) for DVFS enabled SCMP platforms

Algorithm 1 β = SFAA(Γ,m)

Input: Γ Output: β, P
Sort tasks in Γ in decreasing order of size

Initialize Φ to zero

for i = 1 to n do

for Each task τk in Γ do

for j = 1 to m do

pj ∪ τk
ϑk,j = SysClock(pj)
θk,j = ϑk,j − Φ(pj)
pj − τk

end for

Θk = max(θk,1, ..., θk,m)
end for

ψ = q|ϑk,q = min(ϑk,1, ..., ϑk,m)
Assign τl to P (pψ)|l = maxτl∈Γ(Θ1, ...,Θn)
Update Φ(pψ) with SysClock(pψ)
Γ = Γ − τl

end for

β = max(Φ)
return β and P

We propose a frequency assignment algorithm for

identical multi-core processors with a common clock

input called SCMP Frequency Assignment Algorithm

(SFAA) given in Algorithm 1. SFAA uses the Sys-Clock

[34] algorithm to determine the lowest possible operating

frequency for a given task-set. We briefly describe Sys-

Clock here. In a system using a fixed-priority preemptive

scheduling policy, the workload needed to complete a

task’s request composes of the task’s own execution and

the preemption by higher priority tasks. When there are

multiple task periods, the preemption is not uniformly

distributed over the task’s critical zone. The workload

hence varies in preempting processor cycles and depends

on when the task completes. Since the workload changes

at the end of each idle period, Sys-Clock determines

the clock frequencies which allow a task to complete

execution exactly at the end of each idle period between

the earliest and latest possible completion time. The
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Figure 5: Normalized power consumption performance of

WFD and SFAA for 25 Tasks with a dual-core processor.

relationship from an actual DVFS architecture, namely

the NVIDIA Tegra2 processor.

6.2. Results and Discussion

For the first experiment, we set the number of cores

to 8 and number of tasks to 80 as conducted in [1].

Figure 4 shows the results of the first experiment. We

compared the performance of WFD [1] and SFAA. We

see that as the utilization increases SFAA performs better.

SFAA can save up to 55.6% of power consumption

compared to the WFD-based task allocation algorithm,

where Utotal is 5. As Utotal increases, tasks can have

higher utilization. Hence the allocation of tasks have

a more pronounced effect on the operating frequency.

For tasks with larger utilization, allocating right tasks

together is very significant as mentioned in Section 5.1.

Figure 5 and Figure 6 depict the results for the dual-

core processor and the quad-core processor, respectively.

Randomly generated 25 tasks are used for these experi-

ments. Although we performed tests with varying number

of tasks, we show the results of 25-task cases due to

the space constraint. However, the general trend in total

utilization still holds. Since Tegra 2 processor has a dual-

core processor and a quad-core Tegra 3 will be released

soon [14], in this experiment we consider processors with

2 and 4 cores to reflect the current embedded multi-core

processors. In Figure 5, upto 17% of power can be saved

by using SFAA compared to when using WFD. Figure 6

also shows that SFAA is upto 45.2% better than WFD.

The trend shown in Figure 4 can be observed in Figure

5 and 6, too. The same explanation can be applied here.
7. Concluding Remarks

In this paper, we have considered the problem

of energy-aware partitioning for real-time tasks that

are scheduled according to Rate-Monotonic Schedul-

ing (RMS) on CMP platforms with a single volt-

age/frequency domain. The voltage island model with

Figure 6: Normalized power consumption performance of

WFD and SFAA for 25 Tasks with a quad-core processor.

a global voltage/frequency constraint suggests that the

core with maximum load becomes the critical factor in

determining the operating frequency which determines

the overall CMP energy consumption. This implies that

load balancing could be helpful and it has been shown

that the Worst-Fit Decreasing (WFD) heuristic results in

nearly balanced partitions [12]. In this paper, we prove

that WFD when RMS is used is a 1.71 approxima-

tion algorithm for partitioned fixed-priority preemptive

scheduling. We then show that WFD does not always

result in the energy-minimizing partitioning as it does

not consider task periods during allocation. We propose a

Single-clock domain multi-processor Frequency Assign-

ment Algorithm (SFAA) determines a globally energy-

efficient frequency by including task period relationships.

Our experimental evaluation verified the effectiveness of

our solution to reduce the energy consumption on CMP

platforms. The experimental evaluation uses a power

model developed using energy-consumption measure-

ments from NVIDIA’s Tegra 2 processor. We have shown

that SFAA can save up to 55% more power compared to

WFD for an octa-core processor.

It is to be noted that while the theoretical results and

proposed algorithm assume infinite operating frequency

granularity, they are still valid with discrete operating

points. The lowering of the operating frequency will only

result in a lower operating point being used. However,

there could be scenarios where a much higher operating

point is chosen than desired due to lack of operating-point

granularity in the processor. In such cases, there will

be idle-duration that cannot be exploited using DVFS.

However, this idle-duration could be used for dynamic

sleep. We will be exploring this in our future work.

In battery powered systems such as mobile phones and

tablets, devices apart from the processor such as the

display and communication radios consume energy as

well. As part of future work, we are looking to explore

mechanisms for reducing power consumption of such

devices as well.
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