
pCOMPATS: Period-Compatible Task Allocation and Splitting
On Multi-Core Processors

Arvind Kandhalu, Karthik Lakshmanan, Junsung Kim, Ragunathan (Raj) Rajkumar
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{akandhal, klakshma, junsungk, raj}@ece.cmu.edu

Abstract—Extensive research is underway to build chips
with potentially hundreds of cores. In this paper, we con-
sider the problem of scheduling periodic real-time tasks on
multi-core processors. We develop a task partitioning algo-
rithm called Period-COMPatible-Allocation and Task-Splitting
(pCOMPATS) for fixed-priority scheduling of preemptive hard
real-time tasks where the utilization of each of the tasks is
less than 50%. pCOMPATS clusters compatible tasks together
with task splitting to improve the achievable utilization. We
show that as the number of cores increases, the least upper
bound on schedulable utilization achieved using pCOMPATS
approaches 100% per core. To the best of our knowledge,
this is the first result that shows that the utilization bound
improves as the number of processing cores in the system
increases. We refer to tasks having utilization greater than or
equal to 50% as heavy tasks and provide a task-partitioning
algorithm called pCOMPATS-HT for allocating such tasks.
We show that the upper bound on schedulable utilization
when tasks are scheduled using pCOMPATS-HT is at most
72%. We also evaluate the performance of pCOMPATS and
other well-known partitioning techniques, and show that using
pCOMPATS provides much better schedulable utilization in
the average case. We characterize the overhead of pCOMPATS
using measurements on an Intel Core i7 processor running
Linux/RK. The overheads are seen to be low on the platform,
making pCOMPATS to be practical. Our results are especially
useful in the context of future many-core processors with
dozens to hundreds of cores per processor.

I. INTRODUCTION

Multi-core processors that offer multiple processing cores
on a single chip are quickly emerging as the dominant tech-
nology in the microprocessor industry. Major chip makers
including AMD, IBM and Intel now have processors with
2, 4, 8 or 12 cores [8, 24]. Further, extensive research is
underway to build chips with potentially hundreds of cores
[29]. A major issue with multi-core technology however is in
developing parallel software to effectively utilize the avail-
able processing power. Multi-core processors largely resem-
ble symmetric multiprocessors (SMPs). Therefore, existing
software experience with SMPs may prove useful. In multi-
core processors, communication and coordination latencies
are significantly reduced as the cores are co-located on the
same chip. Also, shared levels in the cache hierarchy present
in many modern processors facilitate inter-core data sharing.
Software developed for multi-core processors should exploit
these architectural features to achieve better performance. In
this paper, we consider the problem of scheduling periodic
real-time tasks on multi-core processors to better utilize their
parallel-processing capability.

Real-time scheduling on multi-core processor systems is a
well-studied problem. The scheduling algorithms developed
for this problem are classified as partitioned (static binding)
and global (dynamic binding) approaches, with each cate-
gory having its own merits and de-merits. Recently, semi-
partitioned scheduling approaches have been proposed where
the taskset is partitioned, but some tasks migrate between
selected processing cores at run-time.

In this paper, we focus on the semi-partitioned approach,
and also assume that uniprocessor fixed-priority preemp-
tive scheduling schemes are used. Our proposed algorithm
does not split more than one task per core, and therefore
minimizes any penalties of task-splitting. Our proposed
algorithm called Period-COMPatible-Allocation and Task-
Splitting (pCOMPATS) clusters period-compatible tasks to-
gether with task splitting. pCOMPATS considers tasks whose
individual utilization is less than 50%. We show that as
the number of processor cores increases, the least upper
utilization bound on schedulable utilization achieved us-
ing pCOMPATS approaches 100% per core. We propose
pCOMPATS-HT for allocating “heavy” tasks of utilization
≥ 0.5. We show that the upper bound on schedulable
utilization using pCOMPATS-HT is at most 72%. To the
best of our knowledge, this is the first result that shows
that the utilization bound improves as the number of pro-
cessing cores in the system increases. Multi-core processor
scheduling approaches proposed so far perform independent
of the number of processor cores. Our result is especially
useful in the view of the fact that many chip makers already
have processors with 4 or 8 cores and are planning to add
substantially more processing such as Intel’s 48-core Single-
chip Cloud Computer (SCC) [13]. In order to characterize
the practical overheads of pCOMPATS, we will present
a case study using the Intel Core i7 processor running
Linux/RK [28, 26, 27]. We study the cache overheads due
to task migration and preemption using synthetic workloads
and a media player application called Mplayer. We show
that under realistic overheads, pCOMPATS is a practical
mechanism of improving the overall system utilization in
real-time multi-core scheduling.

II. RELATED WORK

The best-known utilization bound of global fixed-priority
scheduling is 38% [3], which is lower than the best-known
result of partitioned fixed-priority scheduling of 50% [6].

Recently, semi-partitioned scheduling approaches which can
exceed the maximum utilization bound of 50% of the
partitioned scheduling have been proposed [19, 12]. Semi-
partitioned scheduling has been studied with both dynamic
priority scheduling [2, 7, 4, 5, 14, 16, 18, 10] and fixed
priority scheduling [17, 15, 19, 12]. In semi-partitioned
scheduling, most tasks are statically assigned to one fixed
processor as in partitioned scheduling, while a few tasks are
split into two subtasks assigned to different processors each.
Task-splitting takes advantage of the co-located nature of the
processing cores to increase the overall system utilization.
Lakshmanan et al. [19] proposed the algorithm PDMS-
HPTS-DS, which can achieve the worst-case utilization
bound of 65%, and can achieve the bound of 69.3% for
a special type of task sets only containing “light” tasks.
Guan et al. [12] proposed an algorithm that assigns tasks
in decreasing period order, and always selects the processor
with the least workload assigned so far among all processors,
to assign the next task. Their algorithm can achieve the Liu
and Layland’s utilization bound [12, 23]. For an exhaustive
summary of research work related to utilization bounds on
partitioned scheduling, please refer to [11].

In this paper, we propose a task-partitioning algorithm
called pCOMPATS that allocates compatible tasks onto the
same processing cores and splits one task per core to
improve the achievable utilization. In order to cluster period-
compatible tasks, pCOMPATS uses the R-BOUND [20]. We
show that, under pCOMPATS, the schedulable utilization can
reach up to 100% as the number of cores increases. In the
average case, it goes up to 92% for only four cores and up
to 99% for 32 cores.

III. NOTATION AND BACKGROUND

The multiprocessor platform consists of m processors
M1, ..,Mm. We consider a set of independent periodic hard
real-time tasks Γ = {τ1, τ2, ..., τn}, where n is the number
of tasks. Each task τi is given by {Ci, Ti, Di}, where Ci is
the worst-case execution time, Ti is the period, and Di is
the relative deadline from arrival time. We assume in this
paper that Ti = Di, i.e. we consider only implicit deadline
tasks. The utilization of a task τi ∈ Γ is given by Ci/Ti.
The utilization of a taskset assigned to a processor Mp is
given by U(p). The utilization bound for a processor Mp

is given by Ubound(p). In this paper, we will use the terms
cores, processors and processor cores interchangeably.

A semi-partitioned scheduling algorithm consists of two
parts: the partitioning algorithm and the scheduling algo-
rithm. The partitioning algorithm determines if and how
each of the tasks is split, and allocated to a fixed processor.
The scheduling algorithm determines how the tasks allocated
on a processor are scheduled. In this paper, we assume
Rate-Monotonic Scheduling (RMS). With the partitioning
algorithm, most tasks are assigned to a processor and execute
on this processor at run-time. We call these tasks non-split
tasks. Under our proposed algorithm, pCOMPATS, all but
one task is non-split per processor core and therefore we
reduce any penalties of task splitting. The other task is called
a split task. Each subtask of split task τi is assigned to a

different processor, and the sum of the execution time of
all subtasks equals Ci. The subtasks of a task need to be
synchronized to execute correctly. For example, if a task τi
is split into two subtasks τ

′

i and τ
′′

i , then τ
′′

i can be released
only after the completion of τ

′

i .

IV. TASK COMPATIBILITY & SPLITTING
Compatible tasks are tasks that achieve a high processor

utilization when scheduled together on the same processor.
In [22], tasks that have periods closest to a power of two are
considered to be compatible. Harmonic tasks are said to be
perfectly compatible since they can reach 100% utilization
with RMS. Consider the following task-set: τ1 = (4, 10),
τ2 = (6, 14), τ3 = (4, 10), τ4 = (6, 14). Here, tasks τ1
and τ3 are said to be more compatible than τ1 and τ2 as
bundling τ1 and τ3 yields a utilization bound of 1.0 while
bundling τ1 and τ2 yields a utilization bound of 0.828. One
way of achieving a higher utilization bound is to allocate
period-compatible tasks on to the same processor [20, 6],
and using task-splitting approaches [19].

As mentioned earlier, allocating compatible tasks to the
same processor increases the minimum utilization bound of
the task set assigned to that processor. R-BOUND [20] is
a uniprocessor schedulability test which exploits such task
compatibility. For the benefit of the reader, we repeat the
R-BOUND test below.

For a set of n implicit-deadline tasks ordered by increas-
ing periods, where the minimum period T1 and maximum
period Tn are fixed and known, and the ratio of any two
periods is less than 2, the task set is guaranteed to be
schedulable under RMS if the processor utilization is less
than or equal to B(rp).

B(rp) = (n− 1)(r1/(n−1)
p − 1) + 2/rp − 1 (1)

where rp = Tn/T1 is the ratio of the maximum and
minimum periods of tasks assigned to processor Mp. This
bound B(rp) is a decreasing function of n, reaching its
minimum value given by

lim
n→∞

B(rp) = ln rp + 2/rp − 1 (2)

Equation 1 assumes that the ratio of any two periods is
less than 2. In order to satisfy this assumption for arbitrary
tasksets, a “Scale Task Set” (STS) transformation is provided
in [20].

Task splitting is an approach to achieve a higher uti-
lization bound under multi-core processors as observed
in [31, 15, 7, 4, 12]. [19] describes an algorithm, where
tasks are allocated in the decreasing order of size (Ci/Di),
and the highest-priority task in each processor may be split
to achieve a utilization bound of 65%. The motivation for
splitting comes from the fact that the classical bin-packing
problem is easy to solve when any object is permitted to
be split into two pieces, and the sizes of split pieces add
up to the size of the object. When an object does not fit
into a bin, it is split so that the current bin is exactly filled
with one piece, and the residual part is placed in the next
bin. This continues with each bin being filled to capacity,
and containing at most one additional split per bin. The final

Algorithm 1 Γ′ = PeriodTransform(Γ)

Input: Γ Output: Γ′

Tmin = min∀τi∈ΓTi
for ∀τi ∈ Γ do
R = b Ti

Tmin
c

T ′i = Ti/R
C ′i = Ci/R

return Γ′

bin will hold the remaining objects without further splitting.
Since every bin is completely filled before a new bin is
added, both first-fit and best-fit packing decreasing schemes
yield the same result. When real-time tasks are considered,
however, there are two issues that need to be considered: (i)
each (bin) processor cannot be filled up to 100% utilization
since deadlines can be missed at lower utilization under
rate-monotonic scheduling, and (ii) the penalty of splitting
from the utilization perspective is non-zero in practice. We
design an algorithm called Period COMPatible Allocation
and Task-Splitting (pCOMPATS) that combines the desirable
properties of R-BOUND-MP-NFR and Highest Priority Task
Splitting (HPTS) [19].

V. PERIOD COMPATIBLE ALLOCATION AND
TASK-SPLITTING (PCOMPATS)

The pCOMPATS algorithm transforms a given taskset to
satisfy the period requirements of R-BOUND, and uses task
splitting to reduce wasted cycles in each processor. In our
discussion, we restrict our attention to tasksets, where the
individual tasks have a utilization lesser than 50%. For tasks
with utilization greater than 50%, the utilization overhead
of task splitting is quite high as observed in [19], and these
situations can be treated as a special case since no more than
two tasks in this taskset will fit together in a processor. We
will discuss heavy tasks in Section 5.5.

A. Period Transformation

In [20], the authors scale each taskset Γ using the STS
transform so that, 1 ≤ r =

maxτi∈ΓTi
minτi∈ΓTi

< 2 is satisfied. In
our algorithm, we use the period transformation technique to
achieve the same effect. Period transformation is a technique
originally developed to provide graceful degradation under
overload conditions by modifying the workload so that
higher criticality tasks have higher scheduling priorities [30].
The period-transformation algorithm that we use in this
paper is given in Algorithm 1. Henceforth, we will assume
that the taskset has been transformed using Algorithm 1
and the scheduler performs run-time slicing to realize the
transformed periods.

In order to apply task splitting in the R-BOUND context,
we now define a complement of the Highest-Priority Task-
Splitting (HPTS) [19] called Lowest-Priority Task-Splitting
(LPTS). Under HPTS, if a task on a processor is to be split,
the highest priority task τh on the processor is always chosen
as the candidate for splitting. Let the split instances of the
highest-priority task τh on a processor of interest be τ ′h and
τ ′′h , with τ ′h being scheduled on the same processor. The

Algorithm 2 {τ ′l , τ ′′l } = LPTS(τl,Mp)

δmax = HighestPrioritySlack(Mp)
τ ′l = (C ′l = δmax, T

′
l = Tl, D

′
l = Thp)

� τ ′l is given the second highest priority on Mp

τ ′′l = (C ′′l = Cl − δmax, T ′′l = Tl, D
′′
l = Tl)

� τ ′′l is given an offset of (C ′l + Chp)

property that is exploited by HPTS is that the highest priority
task τ ′h on a processor under fixed-priority scheduling has its
worst-case response time equal to its worst-case computation
time. The deadline of the second subtask τ ′′h is therefore
maximized. Please refer to [19] for more details. LPTS
can leverage the property that if tasks are allocated in a
non-decreasing order of periods, then splitting the lowest
priority task on a processor results in a split task whose
second piece has the highest priority among all unallocated
tasks. Please note that the task splitting is performed on
the transformed task set. The transformed task set with task
splitting is scheduled on the processor. We now describe
LPTS in more detail and develop its associated properties.
B. Lowest-Priority Task-Splitting (LPTS)

The LPTS procedure is described in Algorithm 2. We
consider a scenario where the task being split has lower
priority than all allocated tasks and higher priority than all
remaining unallocated tasks. As in [19], we assume that τ
can be split into τ ′ and τ ′′, which can be assigned to different
processors, and should not execute at the same time. The first
piece τ ′ must execute first, and only after the completion
of τ ′ can τ ′′ execute. Furthermore, both τ ′ and τ ′′ must
complete within the same relative deadline of the original
task τ . Each of these subtasks will be assigned its own local
deadline, and the second subtask will be released when the
deadline of the first subtask is reached.

Definition 1. We define a processor Mp as non-full if
increasing the computation time of the highest-priority task
allocated to Mp by a sufficiently small non-zero amount ε
(ε→ 0) does not make the task-set already allocated to Mp

infeasible.

The above definition implies that, on a non-full processor,
the computation time of the highest priority task can be
increased without any other task already allocated to the
processor missing its deadline. We will use the notation δmax
(> 0) to represent the maximum additional computational
time available at the highest priority level on a non-full
processor such that all of the tasks already allocated on pro-
cessor Mp remain schedulable. This means that increasing
the computation time of the highest-priority task by δmax
would still result in a feasible task-set on Mp.

We will also denote the period of the highest-priority task
(τhp) allocated to a processor Mp as Thp , and the period of the
lowest priority task (τ lp) allocated to Mp as T lp. Correspond-
ingly, the worst-case execution time of the highest-priority
task allocated to processor Mp is Chp , and the worst-case
execution time of the lowest priority task allocated to Mp is
Clp. δmax can be obtained by using a similar technique as

that of MaximalSplit from [19, 12]. Each task τi assigned
to processor Mp is considered and the maximum value of
the computation time of the highest priority task (Chp + δ,
δ > 0) for which τi still meets its deadline using an exact
schedulability test is determined. This can be determined for
all τi allocated in processor Mp and the minimum value of δ
over all these tasks can be assigned as δmax. An alternative
way of obtaining δmax is using B(rp) from Equation 1.
Since B(rp), U(p) and Thp are already known, δmax is given
by δmax = (B(rp)− U(p))Thp . When a fast response is
required, this method can be used for deciding δmax. In this
paper, we use this technique.

C. pCOMPATS Algorithm Description

The pCOMPATS algorithm first transforms the given
taskset using the period transformation scheme of Algorithm
1. The period-transformed tasks are then sorted in a non-
decreasing order of periods. Tasks are then packed on to a
processor until unschedulablity is reported when a task τl is
added. If the processor Mp is non-full (without the task τl
being considered for Mp) , then we apply Lowest-Priority
Task-Splitting (LPTS) to split τl into τ ′l and τ ′′l such that τ ′l
fills up processor Mp when assigned a local deadline equal
to Thp and explicitly made the second highest-priority task on
Mp. The second piece τ ′′l is allocated to the next processor
Mp+1, and we continue allocation onto the next processor
Mp+1. Alternatively, if the processor Mp is already full,
then the task is added to the next processor Mp+1, and we
continue with the allocation.

In this paper, we only consider tasksets with implicit-
deadline tasks with task deadlines equal to periods. We also
assume rate-monotonic scheduling on each processor. Under
pCOMPATS, the only task that violates this assumption is
τ ′l , which is assigned a deadline Thp that is shorter than
its period Tl. We also assign the second highest scheduling
priority to task τ ′l . The schedulability of split task τ ′l will be
proved separately in Lemma 1, and the impact of τ ′l on other
tasks will be quantified in Theorem 1. The pCOMPATS task
allocation algorithm is described in Algorithm 3.
Lemma 1. Under pCOMPATS, if adding a task τl : (Cl, Tl)
to a non-full processor Mp renders the task-set allocated to
Mp infeasible, then τl is split using LPTS, and the split task
τl = {τ ′l ∪ τ ′′l } will be schedulable on processors Mp and
Mp+1, when ∀τi, Ui < 0.5.

Proof: If task τl is the candidate for splitting, task τl has
the lowest priority among all allocated tasks, since pCOM-
PATS allocates tasks in non-decreasing order of periods.
Recall that period transformation ensures that 1 ≤ rp < 2.
Let the split instances of τl be τ ′l and τ ′′l with τ ′l being
scheduled on Mp. The split instances of τl are given by:

τ ′l : (C ′l , T
′
l , D

′
l), τ

′′
l : (C ′′l , T

′′
l , D

′′
l)

where, C ′l = δmax, C ′′l = Cl − δmax, D′l = Thp , D′′l = Tl,
T ′l = Tl, T ′′l = Tl.

On the processor Mp, the split task τ ′l is assigned a
deadline of Thp , and the second highest scheduling priority.
Any job of τ ′l can face only a single preemption from the

Algorithm 3 pCOMPATS(Γ)

Γ′ = PeriodTransform(Γ)
Sort tasks in Γ′ in non-decreasing order of periods
for Each task τl in Γ′ do

if non-full(Mp) and (not schedulable(Mp ∪ τl)) then
{τ ′l , τ ′′l } := LPTS(τl,Mp)
Mp := Mp ∪ τ ′l
Mp+1 := Mp+1 ∪ τ ′′l
p := p+ 1
if p > m then

return unschedulable
else

if (not non-full(Mp)) then
p := p+ 1
if p > m then

return unschedulable
Mp := Mp ∪ τl . Mp ∪ τl is schedulable

return schedulable

task with the highest scheduling priority on Mp, with period
Thp = D′l. The worst-case response time W (τ ′l) is therefore
given by W (τ ′l) = Chp + δmax = Chp + C ′l . Also, since the
period and deadline of τ ′′l are equal to that of τl, τ ′′l will
retain its highest priority on the next processor Mp+1 due to
the arrangement of unallocated tasks in the non-decreasing
order of periods.

This implies that the worst-case response time of τ ′′l on
Mp+1 will just be equal to C ′′l . In other words, W (τ ′′l) =
C ′′l = Cl−δmax. Then, the worst-case response time of task
τl is given by W (τl) = W (τ ′l) +W (τ ′′l) = Chp + Cl.

For task τl to be schedulable, we need to ensure that
W (τl) ≤ Tl. Since Ui < 0.5,

Chp
Thp

+ Cl
Tl

< 1. Also, since

Tl ≥ Thp ,
Chp
Tl

+ Cl
Tl
< 1 and Chp +Cl < Tl hold. Hence, task

τl is schedulable on processors Mp and Mp+1.

Lemma 2. Under pCOMPATS, if a task τi: (Ci, Ti) is added
to a non-full processor Mp, and Mp is schedulable when
adding τi, then all tasks in Mp will remain schedulable.

Proof: Consider the scenario when we add any new task
τl to processor Mp. There are two possible cases: (i) Task
τl can be added to Mp and Mp remains schedulable with
τl. Here, by the algorithm definition, any task τi already
allocated to Mp is schedulable along with all other tasks on
Mp. (ii) Task τl gets split using LPTS, and the piece τ ′l with
computation time δmax and deadline D′l = Thp is added to
Mp. In this case, processor Mp should remain schedulable
since δmax is by definition the maximum slack available
at the highest priority level such that the taskset allocated
to the processor Mp is schedulable, and τ ′l has the second
highest priority with a period Tl ≥ Thp . Hence, all tasks, once
allocated to a processor Mp under pCOMPATS, continue to
be schedulable.

D. Utilization Bound Analysis for pCOMPATS
Compatible tasks are tasks that achieve a high processor

utilization when scheduled together on the same processor.

Theorem 1. Given an R-BOUND ratio rp for a task-
set allocated to a processor Mp using pCOMPATS, the
schedulable utilization bound of processor Mp, (denoted by
Ubound(p)), is given by:

Ubound(p) ≥ ln rp − 3rp−5
2rp

when ∀τi, Ui < 0.5

Proof: There are two cases to consider.
Case 1: A task τl gets split on the processor Mp into τ ′l

and τ ′′l with τ ′l assigned to Mp, and τ ′′l assigned to Mp+1.
From the definitions of the R-BOUND ratio rp and the
highest-priority task period Thp on Mp, we have Tl = rpT

h
p .

We know from the definition of LPTS that D′l = Thp , and D′l
is smaller than the period T ′l = Tl of τ ′l . We accommodate
for this constrained deadline of τ ′l by considering a task τ∗l
with period T ∗l = D′l = Thp , computational requirement
C∗l = C ′l , deadline D∗l = D′l, and the second highest
scheduling priority on processor Mp. If the taskset allocated
to processor Mp is schedulable with τ∗l (instead of τ ′l) under
rate-monotonic scheduling, then the taskset should also be
schedulable with τ ′l since τ ′l represents a task with a longer
period but equal priority as τ∗l [9].

We know that Tl = rpT
h
p . We therefore have the synthetic

utilization1 [1] of τ ′l as U∗(τ ′l) = δmax
Thp

. For task τ ′′l , we

have U(τ ′′l) = Cl−δmax
Tl

= Cl−δmax
rpThp

. Hence, the utilization
inflation χ of task τl due to task splitting is given by:

U∗(τ ′l) + U(τ ′′l)− U(τl) = (rp − 1) δmax
rpThp

=
(rp−1)
rp

U∗(τ ′l)

Since we use B(rp) to obtain δmax, we know that δmax =
(B(rp)− U(p))Thp satisfies. We also know that δmax < Cl
since the task τl would not be split otherwise, and U(τl) is
less than 0.5 based on the assumption. Therefore, U∗(τ ′l) <
0.5, and the inflation χ of task splitting in pCOMPATS is
thus limited by χ < rp−1

2rp
.

The utilization bound of processor Mp without split-
ting obtained using the R-BOUND (Equation 2) is
limn→∞B(rp) = ln rp + 2/rp − 1. Accounting for the
inflation χ of task splitting gives us the utilization bound
for pCOMPATS as Ubound(p) ≥ [ln rp+ 2/rp−1]− (rp−1)

2rp
.

Rearranging, we have

Ubound(p) ≥ ln rp −
3rp − 5

2rp
(3)

Case 2: No task gets split on the processor Mp. The
utilization bound in this scenario is given in [20], where
Ubound(p) = ln rp + 2

rp
− 1 = ln rp − 2rp−4

2rp
.

We have 2rp − 4 ≤ 3rp − 5, since rp ≥ 1. Hence,

Ubound(p) ≥ ln rp − 3rp−5
2rp

Figure 1 shows the utilization bound achieved under
pCOMPATS as the r-bound ratio varies from 1 to 2.

1The synthetic utilization is defined as the ratio of the computation time
of a task to its deadline.

1 1.2 1.4 1.6 1.8 2
0.4

0.5

0.6

0.7

0.8

0.9

1

R-Bound Ratio

U
ti

li
z
a
t
io

n
B

o
u
n
d

fo
r

p
C

O
M

P
A

T
S

Figure 1: The utilization bound for pCOMPATS as the r-
bound ratio varies from 1 to 2.

Corollary 1. As the ratio of the longest and the shortest
periods of the tasks assigned to a processor Mp, i.e. r-bound
ratio of processor Mp, approaches 1.0, the utilization bound
of processor Mp approaches 1.0 under pCOMPATS.

Proof: From Equation 3, as rp decreases, Ubound(p)
increases. And,

lim
rp→1
{ln rp −

3rp − 5

2rp
} = 1 (4)

We will now study the utilization bound achieved by
pCOMPATS. We will do this by studying the first m − 1
processors and the mth processor separately as the overhead
of task-splitting is present only on the first m−1 processors.

Lemma 3. The utilization bound of a task-set Γ with a r-
bound ratio r (after period transformation) achieved on the
first k = m− 1 processors, where m ≥ 2 is given by:

Ukbound = 1
k

k∑
p=1

Ubound(p) =
1

k

k∑
p=1

(ln r
1
k − 3r

1
k − 5

2r
1
k

)

when ∀τi, Ui < 0.5 and p < m.

Proof: Let τhp be the highest-priority (shortest period)
task assigned to processor Mp, and τ lp be the lowest pri-
ority (longest period) assigned to processor Mp. Task τ1 is
assigned to processor M1, and τn is assigned to processor
Mk. Then, rp =

T lp
Thp

holds good. Hence,

r1r2...rprp+1...rk =
T l1
T1

T l2
Th2

....
Tn
Thk
≤ Th2
T1

Th3
Th2

....
Tn
Thk

Since tasks are allocated in non-decreasing order of periods
or non-increasing order of priorities T li ≤ Thi+1. Therefore,

r1r2...rprp+1...rk ≤ r (5)

where, r is the maximum ratio between any two tasks in the
period-transformed taskset.

In order to minimize the per-processor utilization bound,
we need to minimize (from Equation 3):

1

k

k∑
p=1

Ubound(p) =
1

k

k∑
p=1

(ln rp −
3rp − 5

2rp
) (6)

subject to Constraint 5. A necessary condition for the mini-
mizer is that the gradient of the Lagrangian function be zero
(see example 14.13 in [25]). Let λ denote the Lagrangian

2 4 6 8 10 12 14 16

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Processor Cores

U
ti

li
z
a
t
io

n
B

o
u
n
d

fo
r

p
C

O
M

P
A

T
S

r=1.2
r=1.4
r=1.6
r=1.8
r=2.0

Figure 2: The utilization bound for pCOMPATS for various
r-bound ratios as the number of processors is increased from
2 to 16.

multiplier for Constraint 5, where λ ≥ 0. Hence, necessary
conditions for the local minimizer are:

1

k
(

1

ri
− 5

2ri
2) = λ(r1r2...ri−1ri+1...rk),∀i, 1 ≤ i ≤ k

λ(r1r2...riri+1...rk − r) = 0

For the given equations above, either of λ = 0 or
r1r2...riri+1...rk = r should be satisfied. If λ = 0,
1
ri
− 5

2ri2
= 0,∀i, 1 ≤ i ≤ k because k 6= 0. Then, we

get ri = 2.5, which contradicts the assumption that r < 2.
Hence, λ > 0.

When r1r2...riri+1...rk = r, we get ∀i, 1 ≤ i < m,
1
k (1

ri
− 5

2ri2
) = λr

ri
since r1r2...ri−1ri+1...rk = r

ri
.

Rearranging, ∀i, 1 ≤ i < m, ri = 5
2(1−λrk) . Hence,

r1 = r2... = rp... = rk = r
1
k .

Thus, we have:

1

k

k∑
p=1

Ubound(p) =
1

k

k∑
p=1

(ln r
1
k − 3r

1
k − 5

2r
1
k

) (7)

Figure 2 depicts the utilization bound for pCOMPATS for
various r-bound ratios as the number of processor cores is
increased.

Theorem 2. The utilization bound of a task-set Γ with
an r-bound ratio r (after period transformation) for m
processors, where m ≥ 2, is given by:

Umbound =



1
m{(m− 1)(ln(5

2)
1
m − 3

2 +
5
2

(5
2)

1
m

)+

ln(4
5 (5

2)
1
m) +

5
2

(5
2)

1
m
− 1}, if 2 ≤ m < 5

1
m{(m− 1)(ln(2

1
m−1)− 3

2 + 5

2·2
1

m−1
) + 1},

if m ≥ 5

, when ∀τi, Ui < 0.5

Proof: pCOMPATS splits a task if and only if a
task cannot be scheduled on the current processor. Upon
splitting, all the “available” utilization on that processor
is used up by the first sub-task. It can be observed that
given m processors, splitting will take place only on
processors M1 to Mm−1. This implies that processor
Mm will not incur the penalty of utilization inflation

due to task splitting. Hence, the utilization bound for
each of the first m − 1 processors is given by Equation
3 and the utilization bound for the mth processor is
given by R-BOUND [20]. Let the r-bound ratio for tasks
allocated by pCOMPATS on processors M1, ..,Mm−1

be β and processor Mm be ψ. Let βψ = α. From
Equation 7, the total utilization bound is given by Umbound =

1
m

{
(m− 1)

(
ln(β

1
m−1)− 3β

1
m−1−5

2β
1

m−1

)
+ lnαβ + 2β

α − 1

}
.

The above function is decreasing in α when 1 ≤ α < 2. In
our case, we use period transformation to limit the maximum
value of r-bound ratio to 2 (Please refer to Section 5.1).
Hence, the utilization bound is computed with α = 2.
Therefore, the total utilization bound is given by Umbound =

1
m

{
(m− 1)

(
ln(β

1
m−1)− 3β

1
m−1−5

2β
1

m−1

)
+ ln 2

β + β − 1

}
.

The above utilization bound function is decreasing until
β = (5

2)1− 1
m , and is increasing beyond this value. We know

that β ≤ 2. Hence we have, β =

{
(5

2)1− 1
m , if 2 ≤ m < 5

2, if m ≥ 5
From the above equations, we have:

Umbound =



1
m{(m− 1)(ln(5

2)
1
m − 3

2 +
5
2

(5
2)

1
m

)+

ln(4
5 (5

2)
1
m) +

5
2

(5
2)

1
m
− 1}, if 2 ≤ m < 5

1
m{(m− 1)(ln(2

1
m−1)− 3

2 + 5

2·2
1

m−1
) + 1},

if m ≥ 5

Corollary 2. As the number of processors increases, the
utilization bound of a task-set Γ scheduled using pCOMPATS
approaches 1.

Proof: From Theorem 2, we have:

lim
m→∞

1

m
{(m− 1)(ln(2

1
m−1)− 3

2
+

5

2 · 2
1

m−1

) + 1} = 1

(8)

Equation 12 is depicted in Figure 3.

Proposition 1. Under fixed-priority partitioned scheduling
without task-splitting, the utilization bound for tasks, where
each tasks’s utilization is less than or equal to 0.5, is no
more than 2

3 + 1
3k , where k is the number of processors.

Proof: Consider k processors with 2k + 1 tasks, each
with utilization of 1

3 +ε. This taskset is not schedulable since
no 3 tasks can fit on the same processor. The utilization
bound is therefore no more than 1

3 (2k+1
k) = 2

3 + 1
3k

pCOMPATS Example: It can be observed that although
r for a given task-set could be just less than 2 in the worst
case, the individual rp for each processor p does not have
to be necessarily better for improving the schedulability
bounds. For example, consider the following taskset obtained
after period transformation is: Γ

′
τ1: (20, 100, 100), τ2:

(36, 120, 120), τ3: (75, 150, 150), τ4: (80, 160, 160), τ5:
(100, 180, 180), τ6: (38, 190, 190). Let the system comprise
three processors M1, M2 and M3. According to the proposed

10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Processor Cores

U
t
il

iz
a
t
io

n
B

o
u
n
d

fo
r

p
C

O
M

P
A

T
S

Figure 3: Utilization Bound for pCOMPATS as the number
of processor cores increases.

pCOMPATS task allocation algorithm, tasks are allocated
in increasing order of periods. Observe that after tasks τ1
and τ2 fit into M1, M1 is non-full. If task τ3 is added
to M1, it will have a worst-case response time of 187
causing it to miss its deadline of 150. Therefore, task
τ3 will be split into τ

′

3: (44, 150, 100) having the second
highest priority on M1, and τ

′′

3 : (31, 150, 150) having the
highest priority on M2. Similarly, on processor M2, task
τ4 can be allocated, and task τ5 has to be split into τ

′

5:
(31, 180, 150) having the second highest priority on M2,
and τ

′′

5 : (69, 180, 180) having the highest priority on M3.
Task τ6 can be allocated to M3. The R-BOUND ratio for
the entire taskset is r = 190/100 = 1.9. Now, let us look at
the R-BOUND ratios of the individual processors: r1 = 1.5,
r2 = 1.067 and r3 = 1.056. As we can see, the individual
R-BOUND ratios are better than r, and this effect offsets
the utilization inflation due to task-splitting.

E. Heavy Tasks

Theorem 2 assumes that ∀τi, Ui < 0.5. In this section,
we propose pCOMPATS-HT which is specifically designed
for handling heavy tasks, i.e. tasks with utilization ≥ 0.5.

1) pCOMPATS-HT: The pCOMPATS-HT scheme is
given in Algorithm 4. The algorithm arranges the trans-
formed taskset in non-decreasing order of priorities and
allocates each of the tasks into each of the empty processors.
If no empty processor is found and if the current processor
is non-full, then Highest-Priority Task Splitting (HPTS) [19]
is employed.

In pCOMPATS-HT, due to the non-decreasing priority
order arrangement of the taskset, the task currently being
considered for allocation to a processor will be the highest
priority task in that processor.

For heavy tasks, HPTS is used instead of LPTS. Under
LPTS, the response times of the subtasks are increased by
the response times of the higher priority tasks. For heavy
tasks, such an increase could potentially cause a deadline
miss. Hence, in order to avoid deadline misses, HPTS is
employed.
Theorem 3. The upper bound on schedulable utilization of
a task-set Γ (after period transformation) when scheduled
using pCOMPATS-HT is at most 72% (when ∀τi, Ui ≥ 0.5).

Proof:
Consider the case when the number of processors m = 3

and, three tasks of utilization 0.5 and one task of utilization

Algorithm 4 pCOMPATS −HT (Γ)

Γ′ = PeriodTransform(Γ)
Sort tasks in Γ′ in non-decreasing order of priority
Assign the m lowest priority tasks to each of the m
processors.
p := 1
for Each task τ remaining in Γ′ do

while Not schedulable(Mp ∪ τ) do
{τ ′, τ ′′} = HPTS(τ,Mp) .see [19]
Mp = Mp ∪ τ
τ := τ ′′

p := p+ 1
if p > m then

return unschedulable
Mp = Mp ∪ τ
if p > m then

return unschedulable
return schedulable

0.656+ε (ε→ 0) is allocated using pCOMPATS-HT. Given
that the utilization of each of the tasks is ≥ 0.5 and that
the Liu and Layland 2-task utilization bound is 0.828, it can
be seen that no more than two tasks can be allocated onto a
processor. Hence, in this case, each of the tasks of utilization
≥ 0.5 will be allocated to each of the processors. One task
of utilization 0.656 + ε will be split into three sub-tasks of
0.328, 0.328 and ε. Each of the sub-tasks will be allocated
onto each of the processors. The utilization bound is then
≈ 72%. This example can be extended for m processors.
Consider n tasks with utilization ≥ 0.5 where n > m. The
first m tasks will each be allocated to a processor. Now the
(m+ 1)th task τm+1 will not fit into any of the processors
due to the 2-task utilization bound of 0.828. Say τm+1 is
split across p processors. Then, p−1 processors will be filled
up to 0.828 and the pth processor will have the remaining
piece ε. In the worst case this piece could be U(ε)→ 0 and
the already allocated task have an utilization of 0.5. The total
utilization is then Up = (p−1)∗0.828+(0.5+ε)

p . When p = 2,
Up is ≈ 75% and when p = 3, Up is ≈ 72%. When p is
greater than 3, Up only increases. Thus, the upper bound
on schedulable utilization of a task-set Γ where each of the
task’s utilization is ≥ 0.5 when allocated using pCOMPATS-
HT is ≈ 72%.

VI. EVALUATION FOR AVERAGE-CASE BEHAVIOR
We have so far analyzed the worst-case performance of

the pCOMPATS algorithm and obtained its utilization bound.
The worst-case performance occurs when the R-BOUND
ratio for the task-set is less than 2 by an infinitesimally small
non-zero amount, and the R-BOUND ratios for each of the
processors are equal and less than 2/m by an infinitesimally
small non-zero amount. Additionally, when a task τi is
split such that τ ′i is allocated to processor Mp and τ ′′i is
allocated to processor Mp+1, U(τ ′i) should be almost equal
to that of τi and U(τ ′′i) is just greater than zero. These
conditions represent extreme situations, and the average-case
performance of pCOMPATS is expected to be far better than

10 20 30 40 50 60
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Processor Cores

B
r
e
a
k
d
o
w

n
U

t
il

iz
a
t
io

n

pCOMPATS
PDMS−HPTS−DS
R−BOUND−BFD
BFD

Figure 4: Breakdown utilization of various task-partitioning
algorithms as the number of processor cores increases for
tasks with period ranging between 100 to 200.

its utilization bound.
In this evaluation, we will study the average-case per-

formance of our algorithm on randomly generated tasksets
and compare it against PDMS-HPTS-DS [19], R-BOUND
with Best Fit Decreasing heuristic (R-BOUND-BFD) and
plain Best Fit Decreasing (BFD) heuristic. The breakdown
utilization values were computed as given in [21]. The task
period T for each task was chosen in an uniformly random
fashion from the interval [100, 200] in the first experiment
and between [100, 1000] in the second experiment. The
computation time C for each task was chosen using a
uniform distribution from the interval [0, 0.5T]. Tasks were
generated till the total utilization exceeded m×100%. These
computation times were then proportionally scaled down to
compute the breakdown utilization (for more details , please
see [21]).

In Figure 4, where average breakdown utilization is plot-
ted from 1000 runs, one can observe that as the number of
cores increases, the breakdown utilization for pCOMPATS
keeps increasing while that of PDMS-HPTS-DS and R-
BOUND converge to about 85%. Also, it is to be noted that
even for a smaller number of processors, pCOMPATS does
much better than its worst-case utilization bound. PDMS-
HPTS-DS does not go beyond 85% as it suffers from
task splitting overhead. R-BOUND-BFD on the other hand
suffers from bin-packing effects i.e. there could be unused
“space” in the processor into which a task could not fit
as it does not leverage task-splitting. The BFD algorithm
does not leverage the compatibility of tasks within a given
task-set and also does not perform task-splitting, resulting in
inefficient packing. In the second experiment, we increased
the range of the periods of the tasks to [100,1000]. The
results of this experiment are shown in Figure 5. Here, we
see that all the algorithms perform better but the performance
of R-BOUND-BFD remains the same. This is because R-
BOUND-BFD uses STS and hence the increase in task
period does not affect it. Meanwhile, PDMS-HPTS-DS
performs better due to lower loss in utilization due to task-
splitting. Still, pCOMPATS continues to perform the best.

VII. CASE STUDY
In this section, we present a case study characterizing

the practical overheads associated with pCOMPATS due to
task splitting and period transformation on the Intel Core i7
processor running Linux/RK. The processor has four cores

10 20 30 40 50 60
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Processor Cores

B
r
e
a
k
d
o
w

n
U

t
il

iz
a
t
io

n

pCOMPATS
PDMS−HPTS−DS
R−BOUND−BFD
BFD

Figure 5: Breakdown utilization of various task-partitioning
algorithms as the number of processor cores increases for
tasks with period ranging between 100 to 1000.

0	

5	

10	

15	

20	

25	

30	

35	

40	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Ta
sk
	
 M

ig
ra
*o

n	

O
ve
rh
ea
d	

(u
se
cs
)	

Stride	
 Length	
 of	
 Cache	
 Access	
 (Bytes)	

Task	
 Migra*on	
 Overhead	
 vs	
 Task	
 Cache	
 Access	
 Stride	
 Length	
 	

(Constant	
 working	
 set	
 Size	
 of	
 8KB)	

(a) Migration overheads vs Cache access stride
lengths

0	

10	

20	

30	

40	

50	

60	

70	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Ta
sk
	
 M

ig
ra
*o

n	

O
ve
rh
ea
d	

(u
se
cs
)	

Working	
 Set	
 Size	
 (Kbytes)	

Task	
 Migra*on	
 Overhead	
 vs	
 Task	
 Working	
 Set	
 Size	

(Constant	
 Stride	
 Length	
 of	
 1)	

(b) Migration overheads vs Working-set sizes

Figure 6: Task migration overheads measured on Intel Core
i7 platform

with private L1 and L2 caches and a shared L3-cache. The
L1-cache (64 KB) is a split cache with both Instruction and
Data caches having a size of 32 KB each. The L2-cache is
of size 256 KB. The L3-cache is a unified cache of size 8
MB. L1, L2 and L3 are on-chip resources, and the cache
line size is 64 bytes.

A resource kernel [28, 26, 27] is a resource cen-
tric approach for building real-time kernels that provide
timely, guaranteed and enforced access to system resources.
Linux/RK [26, 27] is a resource kernel within the Linux
operating system. There are two basic abstractions in
Linux/RK, a reserve and a resource set. A reserve represents
a share of a single computing resource such as CPU time,
physical memory pages, a network bandwidth and so on. A
resource set is a grouping of reserves on different resources
into a single set that is accessible by user processes. In
this work, we are concerned with the CPU resource. Each
reservation is analogous to a fixed-priority aperiodic server

and will consist of the (C, T,D) model, where C is the
execution budget, T is the replenishment period of the
reservation and D is the deadline. Tasks that are split will
have a budget for each of the cores it is executed on. Hence,
the reservation for split tasks will consist of a CPU affinity
apart from (C, T,D) and the ordering of the migration.

Linux/RK uses the High-Resolution timer (HRtimer) to
maintain the fine-grained timing information. The HRtimer
is a per-core hardware counter with nanosecond precision,
which has been adopted in most mainstream processor archi-
tectures. Each HRtimer is related with a time-ordered event
tree. When it reaches the counting time of current pending
event, the current event’s callback function is invoked and
the next pending event is reloaded. Using the HRtimer,
task accounting and release is performed. The CPU core
that a task should be scheduled on is set by using the
sched setaffinity() kernel function. The migration of a split
task will be handled by setting the CPU affinity in the
HRtimer callback function.

In order to understand the impact of task migration on
cache performance, we evaluated a series of synthetic cache
workloads. These workloads had varying working-set sizes
(from 1 KB to 64 KB) and stride-lengths (1 to 64 bytes).
The performance of these workloads are shown in Figure
6a and Figure 6b. The overall overhead was acceptably
low (less than 60 microseconds) for these cache-workloads.
These workloads exercised only the data cache, and the in-
struction cache effects were neglected in these experiments.
The timing measurements were done at a fixed processor
frequency of 3 GHz. The results show that the overheads
are generally lower at smaller working set sizes, as expected.
At lower stride lengths, the cache overhead of task-splitting
is higher. As the stride length increases, the performance
difference introduced by task-splitting diminishes. When
a split-task migrates from one core to another, it has to
re-create the cache state on the new core. A task with
spatially sparse access patterns will load its entire cache
state much faster than those with sequential access patterns.
Most modern cores provide extensive support for out-of-
order execution, load-store queues, and cache pre-fetching,
which reduce the impact of task migration. In such cores,
tasks with spatially sparse access patterns generate multiple
parallel requests to different cache lines, whereas sequential
access patterns result in stalling on the same cache line.
This analysis was done with R/W access patterns; however,
similar behavior was also observed with read-only access.
Although not shown here, tasks with low temporal locality
will also have lower cache overheads due to task splitting.

In an effort to characterize the impact of task migration
on a real-world application, we looked at the media player
application called Mplayer. We observed that the overhead
due to task splitting was negligible. Mplayer was scheduled
such that the decode frame module gets split across the
two cores at exactly mid-way through the processing. The
FFmpeg library with libavcodec was used and a mpeg4 file
was being played. The core computational loop in the video
player is comprised solely of decode frame in addition to
minor accounting updates. Without task splitting, the average

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Pr
ee
m
p&

on
	
 O
ve
rh
ea
d	

	

(u
se
cs
)	

Task	
 Period	
 (ms)	

Figure 7: Period Transform overheads measured on Intel
Core i7 platform

time taken by a single call to decode frame was 3.79 ms.
After performing task splitting, the average time taken for a
decode frame call was increased by approximately 0.03 ms.
The reason for the overhead of about 30 microseconds is
probably the fact that it incurs heavy cache overheads. The
video was being played at approximately 45 frames/second
(a period of 22 ms), and this cache overhead translates to
0.135% in terms of decoder task utilization. It is to be noted
here that the overhead numbers include both OS overhead
in migrating the task, as well as cache-overheads.

To measure the overhead of period transformation, we
consider two tasks τ1 and a test task τ2. Both tasks are
CPU-bound to avoid cache overheads since we are con-
cerned only with the preemption overheads due to period
transformation in this case. We first let task τ2 execute
without any interruption (with the highest priority in the
RT scheduling class), and record its execution time, as the
net time. Then we let τ2 run with τ1, where τ2 has lower
priority than τ1. We record task τ2’s execution time in
this case, as the gross time. The overhead equals the gross
time minus the net time. The measured overhead includes
the overhead of scheduler invocation, context switch and
queueing operations. We measured the average preemption
overhead to be 5 microseconds. When period transformation
is applied, the number of preemptions faced by the lower
priority tasks will increase. This increase will also depend
on the number of tasks in the system. As an example, we
let τ1 have an utilization of 40% with a period of 100 ms.
This experiment is repeated over different period transform
ratios of task τ1. The measurements were averaged over one
million runs for each of the experiments. The measurement
results are shown in Figure 7, which shows the overhead
when task τ2 faces every preemption from τ1. In reality,
τ1 might be scheduled during idle intervals. We see that
as the period of τ1 is reduced, the overhead increases due
to the increased number of preemptions. When the period
is reduced by a factor of 10 (from 100 ms to 10 ms), the
overhead is still only around 450 µs over a 1000 ms interval,
corresponding to an overhead of 0.045%. In pCOMPATS,
period transformation is performed only to bring the ratio
of the task periods to be within 1 and 2, thus limiting the
overhead caused by period transform.

Preemptions also cause cache related overheads. To mea-
sure this cache related overhead, competing task τ1 and test
task τ2 read and write to an array of size equal to the
working set size. First, we execute test task τ2 to ensure
that its working set has been loaded into the cache. Then,

0	

5	

10	

15	

20	

25	

30	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Ta
sk
	
 P
re
em

p+
on

	
 O
ve
rh
ea
d	

(u
se
cs
)	

Working	
 Set	
 Size	
 (Kbytes)	

Task	
 Preemp+on	
 Overhead	
 vs	
 Task	
 Working	
 Set	
 Size	
 	

(Constant	
 Stride	
 Length	
 of	
 1)	

Figure 8: Task preemption overhead for varying working set
size measured on Intel Core i7 platform
we execute τ2 again to measure the net time of τ2. Next,
we let τ2 to run with the competing task τ1 where τ1 has
a higher priority. We record the test task’s execution time
in this case as the gross time. The experiment is repeated
for different working set sizes and is shown in Figure 8.
Our measurements shows that in general the cache-related
overhead due to task migrations is greater than local context
switches but only by a small margin. This is due to the
shared lower-hierarchy caches (L3 cache in our case): in
both local context switches and task migrations, most of
the working space of the preempted/to-migrate task will be
replaced out from the private cache (L1 and L2 cache in our
case), and stay in the shared lower-hierarchy caches. If an
application has generally very small working space (much
smaller than the size of private cache), the cache-related
delay of local context switches will be smaller than task
migrations, since there is a better chance for the working
space of the preempted task to stay in the private cache,
until it resumes execution.

Our evaluation of task migration and period transforma-
tion on a real platform shows that the cache and preemption
overheads caused by them can be expected to be negligible
in multi-core platforms. Hence, pCOMPATS that uses task-
splitting and period transform is a practical approach to
improve the overall system utilization in partitioned real-
time multi-core scheduling.

VIII. CONCLUDING REMARKS
In this paper, we have considered the problem of schedul-

ing periodic real-time tasks on multi-core processors. Specif-
ically, we focus on the semi-partitioned approach, which
statically allocates each task to a processing core and
splits some tasks across cores. We propose an algorithm
called pCOMPATS (period Compatible Allocation and Task
Splitting) that clusters compatible tasks together with task
splitting and show that as the number of processor cores
increases, the least upper utilization bound on schedulable
utilization achieved using pCOMPATS approaches 100%.
pCOMPATS does not split more than one task per processor,
and therefore minimizes any penalties of task-splitting. We
call tasks having utilization greater than or equal to 50%
as “heavy tasks” and provide a task partitioning algorithm
called pCOMPATS-HT for allocating such tasks. We show
that the upper bound on the schedulable utilization using
pCOMPATS-HT is at most 72%. To the best of our knowl-
edge, this is the first result that shows that the schedulable
utilization bound improves as the number of processing
cores increases. Multi-core processor scheduling approaches

proposed so far perform independent of the number of pro-
cessor cores. We have evaluated the performance of pCOM-
PATS and other well-known partitioning techniques, and
show that using pCOMPATS provides much better utilization
bound in the average case. Our results are especially useful
in the context of future many-core processors such as Intel’s
48-core Single-chip Cloud Computer (SCC) [13]. We have
measured the cache and preemption overhead caused by task
splitting and period transformation by pCOMPATS on the
Intel Core i7 processor running Linux/RK. The overheads
are seen to be low on the platform, making pCOMPATS to
be practical.

REFERENCES
[1] T. Abdelzaher, V. Sharma. A synthetic utilization bound for aperiodic tasks with

resource requirements. Euromicro Conference on Real-Time Systems, 2003.
[2] J. H. Anderson, V. Bud, and U. C. Devi. An edf-based scheduling algorithm

for multiprocessor soft real-time systems. ECRTS 2005.
[3] B. Andersson. Global static-priority preemptive multiprocessor scheduling with

utilization bound 38%. International Conference on Principles of Distributed
Systems, pages 73–88, 2008.

[4] B. Andersson and K. Bletsas. Sporadic multiprocessor scheduling with few
preemptions. Euromicro Conference on Real-Time Systems 2008.

[5] B. Andersson, K. Bletsas, and S. Baruah. Scheduling arbitrary-deadline sporadic
task systems on multiprocessors. Real-Time Systems Symposium 2008.

[6] B. Andersson and J. Jonsson. The utilization bounds of partitioned and pfair
static-priority scheduling on multiprocessors are 50%. ECRTS 2003.

[7] B. Andersson and E. Tovar. Multiprocessor scheduling with few preemptions.
Polytechnic Institute of Porto, Portugal HURRAY-TR-060811 2006.

[8] S. Borkar. Thousand core chips: a technology perspective. Design Automation
Conference 2007.

[9] A. Burns and S. Baruah. Sustainability in real-time scheduling. In Journal of
Computing Science and Engineering, 2008.

[10] A. Burns, R. Davis, P. Wang, and F. Zhang. Partitioned edf scheduling for
multiprocessors using a c=d scheme. RTNS 2010.

[11] R. Davis and A. Burns. A survey of hard real-time scheduling algorithms and
schedulability analysis techniques for multiprocessor systems. techreport YCS-
2009-443, University of York, Department of Computer Science, 2009.

[12] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority multiprocessor scheduling
with liu and layland’s utilization bound. RTAS 2010.

[13] Intel. www.intel.com, 2010.
[14] S. Kato and N. Yamasaki. Real-time scheduling with task splitting on multipro-

cessors. RTCSA 2007.
[15] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling on

multiprocessors. RTAS 2009.
[16] S. Kato and N. Yamasaki. Portioned edf-based scheduling on multiprocessors.

EMSOFT 2008.
[17] S. Kato and N. Yamasaki. Portioned static-priority scheduling on multiproces-

sors. IPDPS 2008.
[18] S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling of sporadic

task systems on multiprocessors. ECRTS 2009.
[19] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-priority

preemptive scheduling for multi-core processors. ECRTS 2009.
[20] S. Lauzac, R. Melhem, and D. Mosse. An efficient rms admission control and its

application to multiprocessor scheduling. Parallel Processing Symposium 1998.
[21] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:

exact characterization and average case behavior. Real Time Systems Symposium
1989.

[22] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son. New strategies for assigning
real-time tasks to multiprocessor systems. IEEE Trans. Comput. 1995.

[23] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[24] L. Mosley. Power delivery challenges for multicore processors. In Proceedings
of CARTS, 2008.

[25] S. Nash and A. Sofer. Linear and Nonlinear optimization. McGraw-Hill, 1996.
[26] S. Oikawa and R. Rajkumar. Linux/rk: A portable resource kernel in linux.

IEEE Real-Time Systems Symposium Work-In-Progress, 1998.
[27] S. Oikawa and R. Rajkumar. Portable rk: A portable resource kernel for

guaranteed and enforced timing behavior. RTAS, 1999.
[28] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource kernels: A

resource-centric approach to real-time systems. SPIE/ACM Conference on
Multimedia Computing and Networking, 1998.

[29] E. Seo, J. Jeong, S. Park, and J. Lee. Energy efficient scheduling of real-
time tasks on multicore processors 2008. IEEE Transactions on Parallel and
Distributed Systems.

[30] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some practical problems
in prioritized preemptive scheduling. RTSS 1986.

[31] Shinpei and N. Yamasaki. Real-time scheduling with task splitting on mul-
tiprocessors. International Workshop on Real-Time Computing Systems and
Applications, 2007.

