
SAFER: System-level Architecture for Failure Evasion in Real-time Applications
Junsung Kim, Ragunathan (Raj) Rajkumar

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA, USA

{junsungk, raj}@ece.cmu.edu

Markus Jochim
General Motors R&D

30500 Mound Rd., Warren, MI, USA
markus.jochim@gm.com

Abstract

We propose a layer called SAFER (System-level Archi-
tecture for Failure Evasion in Real-time applications) to
incorporate configurable task-level fault-tolerance features
such as Hot Standby and Cold Standby in order to tolerate
fail-stop processor and task failures for distributed embed-
ded real-time systems. To detect such failures, SAFER mon-
itors the health status and state information of each task
and broadcasts the information. When a failure is detected,
SAFER reconfigures the system to recover failed processors
and tasks. SAFER has been implemented on Ubuntu 10.04
LTS and deployed on Boss, an award-winning driverless
vehicle developed at CMU. We provide preliminary mea-
surements using one of the autonomous driving simulation
scenarios used during the 2007 DARPA Urban Challenge.

1. Introduction

Advances in distributed embedded real-time systems
have enabled a variety of different applications such as sen-
sor networks, industrial control systems, avionic systems
and automotive systems which are tightly coupled with the
physical world. Such applications need to satisfy strict
timing constraints based on operating characteristics, mak-
ing timing guarantees an essential requirement. Further-
more, system reliability can be of high importance for some
safety-critical applications that interact with the physical
world. However, a trend towards increasing complexity in
distributed embedded real-time systems poses challenges in
designing a reliable system.

The conventional way of improving reliability has been
adding redundant hardware. However, this approach be-
comes less attractive to many applications because the
amount of necessary hardware multiplies as the size of the
system increases. It is also not consistent with the grow-
ing needs of flexible system design. Therefore, we pro-
pose a layer called SAFER (System-level Architecture for
Failure Evasion in Real-time applications) to incorporate
configurable task-level fault-tolerance features such as Hot
Standby and Cold Standby in order to tolerate fail-stop pro-
cessor failures and task failures for distributed embedded
real-time systems in a timely manner. To detect such fail-
ures, SAFER monitors the health status and state informa-

tion of each task and broadcasts the information. When a
failure is detected, SAFER reconfigures the system to re-
cover failed processors and tasks using task-level replica-
tion techniques.

SAFER targets multiple goals. Most importantly, no
single point of failure is permitted. In other words, a
task/processor failure should not lead to system failure.
Failure recovery within a guaranteed duration should also
be achieved. Embedded systems are usually tightly con-
nected to the physical world. In such a case, failure recov-
ery without predictable timing behavior could return unpre-
dictable results in the physical world.

Apart from the two goals above, predictive fault dis-
covery and notification, resource isolation, ease of use
of abstraction, ease of application development, and sen-
sor/actuator control are other factors considered in the de-
sign of SAFER.

The rest of this paper is organized as follows. Section
2 describes the architecture of SAFER and its implemen-
tation. Section 3 presents preliminary results measured on
Boss, an award-winning autonomous vehicle developed at
CMU. Section 4 presents the related work, and we conclude
in Section 5.

2. The SAFER Architecture

The SAFER layer is composed of SAFER daemons (one
on each processor) and a library offering a task execution
environment. The library enables any task launched on the
SAFER layer to be periodically executed (with reconfig-
urable parameters). The daemons have a master-slave ar-
chitecture [2], and the master SAFER daemon controls the
slave SAFER daemons responsible for managing tasks on
each node1 and monitoring its health status. The reconfig-
urable parameters for each task are given to the task library
when the task is launched by a SAFER daemon. For the
underlying communication layer, an inter-process commu-
nication primitive such as IPC [11] and SimpleComms [12]
can be used. The overall architecture of the SAFER layer is
illustrated in Figure 1.

The SAFER layer utilizes two main features to avoid sys-
tem failure in the presence of fail-stop processor or task
failures. The SAFER layer supports task-level replication
techniques such as Hot Standby and Cold Standby, where

1In this paper, node is interchangeably used with processor.

Health Monitor Time
Sync.

Manager Process
Launcher

User threads

Status
Updater

Process
Handler

Timing
Enforcer

SAFER Library

Network Abstraction

SAFER
daemon

User
App

IPC

User
App

Mapping
Manager

Nodes

Network

Status Manager

Figure 1. The overall architecture of SAFER

selective tasks on failed processors are recovered on other
live processors. Replicas must therefore be placed on inde-
pendent nodes, a constraint that is referred to as a placement
constraint [6]. The major benefit of using selective task-
level recovery is its flexibility. Since we can selectively re-
cover tasks, we can increase the reliability of more critical
tasks by adding more Hot Standbys/Cold Standbys for those
critical tasks. We can also efficiently manage the available
computing resources by not replicating less-critical tasks,
thus enabling an affordable solution.

The second feature is the fail-over of the master SAFER
daemon. Since the SAFER daemons have a master-slave
relationship and manage tasks on each machine, the master
SAFER daemon becomes a single point of failure. Hence,
when the master SAFER daemon fails, one of the slave
SAFER daemons will be promoted to become the master
SAFER daemon. This can be done using a group member-
ship protocol [4, 10]. Assuming a synchronous communi-
cation network2 [4], the membership protocol of SAFER is
different from the existing work in the sense that (i) we pro-
vide predictable timing behavior and (ii) the recovery dura-
tion of the SAFER daemons is deterministic. In our mem-
bership protocol, all SAFER daemons including the master
and the slaves broadcast messages to each other. The mas-
ter can detect the failures of a slave by the lack of heartbeat
messages. The master SAFER daemon will command as
necessary the slave SAFER daemons on live processors to
recover any failed tasks. The death of the master can also
be detected by the slaves due to the absence of heartbeats,
and one of the slave SAFER daemon will be promoted to
become the master by following a predetermined sequence
of the slave SAFER daemons.

2.1. The SAFER Daemon

As illustrated in Figure 1, a SAFER daemon is com-
posed of a health monitor, status manager, time synchro-
nization manager, mapping manager and process launcher.

2The failure model of network is beyond the scope of this paper. We
assume any packet eventually arrives at the destination.

The health monitor and status manager are responsible for
monitoring the health status of the other processors and for
changing the local node’s role between the master and the
slave. The time synchronization module offers a global time
service. The mapping manager and process launcher can
automatically deploy tasks on the nodes running a SAFER
daemon.

2.1.1. Health Monitor and Status Manager
The health monitor periodically sends heartbeat signals to
the other nodes in the system and monitors the health status
of the other daemons and their processors. Therefore, the
health monitor enables the SAFER daemons to agree upon
the availability of each node. The period of heartbeat sig-
nals is configurable, and the list of current running tasks is
added to the heartbeat signal and is broadcast to the other
nodes. The status manager watches the current status of
tasks running on its own node and notifies the failure of any
task if there is a task failure (say due to a segmentation fault)
by capturing the OS signal.

2.1.2. Time Synchronization Manager
The SAFER layer offers a global time service using a ser-
vice similar to NTP [8] used for time synchronization over
the Internet. The master SAFER daemon behaves as a time
server, and each slave becomes a client for this service and
listens to messages from the time server. This service is
essential to synchronize all the daemons so that the failure
recovery occurs within the given timing requirement using
a proper offset between the primary task and its Hot/Cold
Standbys. This also enables the timing enforcer of the
SAFER library to have less penalty in resource scheduling.

2.1.3. Process Mapping Manager and Launcher
The process mapping manager and launcher are responsi-
ble for automatically deploying tasks on the nodes of the
SAFER layer based on a given system configuration file.
The system configuration file includes information about
where tasks are allocated and how many resources tasks
demand. It also contains the location of the primary and
Hot/Cold Standbys if the tasks are selected to have back-
ups. The process mapping manager maintains the informa-
tion from the system configuration file and updates when-
ever the information changes. Changes to this informa-
tion can occur due to processor failures, demand changes,
task completions, and so forth. Based on the up-to-date in-
formation from the process mapping manager, the process
launcher loads tasks on the different processors. The pro-
cess mapping manager and launcher can be connected to a
user-interface application such that the application provides
a global view of the system with the current health status
of each task on each node. As an example, the information
from the process mapping manager and launcher are visu-
alized on TROCS [7], the operator interface of Boss [13].

Network

SAFER
daemon

Backup

Nodes

IPC

SAFER
daemon

Primary

IPC

State
information

Figure 2. The primary-backup architecture

2.2. The SAFER Library

The SAFER library is a task execution environment com-
posed of a status updater, process handler, timing enforcer
and network abstraction. The user threads developed by ap-
plication developers will run on the SAFER library.

2.2.1. Status Updater
The status updater of the SAFER library supports task-level
replication techniques by managing state information be-
tween the primary and its Hot/Cold Standbys. The role of
status updater changes based on whether a task it monitors
is a primary or a backup. The backups subscribe to the pri-
mary, and the primary publishes its status. They use the
Publish/Subscribe model. The status updater of the primary
task periodically transfers its internal state information to
its Hot/Cold Standbys, where the update period is config-
urable. The status updater at Cold Standby updates the state
information coming from the primary in case the primary
fails. The status updater can also be used as heartbeat sig-
nals by Hot/Cold Standbys. This could be useful when the
period of the state updater is shorter than the update period
of the SAFER daemon. This architecture is also depicted in
Figure 2.

2.2.2. Process Handler
The process handler of the SAFER library promotes a
backup to be the primary when it receives the corresponding
request from the master SAFER daemon. When a backup is
promoted, the new primary starts generating outputs for use
and confirms its promotion to the master SAFER daemon.
It must be noted that a Hot Standby is always running and
its outputs are filtered by the network abstraction under the
control of the process handler.

2.2.3. Timing Enforcer
The timing enforcer of the SAFER library enables tasks to
have guaranteed and protected access to required processing
resources in a timely manner based on Linux/RK [9]. In
Linux/RK, a shared resource is reserved and enforced by the
following parameters: computation time C every T time-
units within a deadline D. For the SAFER library, this CPU
reservation model in Linux/RK is utilized.

2.3. Failure Detection and Recovery

Heartbeat signals from the health monitor of each
SAFER daemon will be used for detecting processor fail-
ures. Since we have assumed a synchronous network, we
have defined a time delay d to represent the maximum
network delay of the heartbeat signal packets. The mas-
ter SAFER daemon will decide the death of a processor
unless it hears a heartbeat signal from a processor within
d + Theartbeat

3, where Theartbeat is the interval between
two consecutive heartbeat signals. We call this failure de-
tection scheme as time-based detection. A task failure may
be directly detected by the status manager of the SAFER
daemon by catching a signal generated by the OS when a
task has unexpectedly failed. Then, the mapping manager
of the master SAFER daemon will be notified by the status
manager, and an appropriate recovery will be initiated. We
name this failure detection scheme as event-driven detec-
tion. It should be noted that event-driven detection cannot
be used for processor failure detection.

The recovery from a failure is done by using task-
level replication techniques such as Hot Standby and Cold
Standby. A Hot Standby of a task is a replicated task run-
ning concurrently with its primary. With no failure, a Hot
Standby receives the same input as the primary, and the user
threads of the Hot Standby do what they are supposed to do
except that the outputs from them are filtered by the network
abstraction4. In the presence of any task failure detected by
the master SAFER daemon, the daemon will send a com-
mand to the SAFER daemons with the Hot Standbys for the
failed tasks. Then, the process handler of each Hot Standby
will receive the command to promote itself to be the pri-
mary. A similar process is also applicable to the recovery
operation for Cold Standbys. One prime difference is that
task needs to be launched first.

The Cold Standby of a task is a dormant binary in mem-
ory, triggered only by the failure of its primary. Without
a failure, a Cold Standby periodically receives and stores
the state information of the primary coming from the status
updater of the primary. The disadvantage of using a Cold
Standby is that the recovery latency could be long when
there is a failure detected by the master SAFER daemon.
Conversely, since it runs only on demand, it saves comput-
ing resources in the absence of failures. We are extending
Linux/RK to minimize the latency of recovery.

3Increasing the decision boundary can be one way of extending the
assumption beyond the synchronous network. For example, many wireless
networks try to send a packet n times in order to transfer it reliably, where
n is a positive integer greater than 1. Then, the decision boundary can be
adjusted to d+ nTheartbeat.

4We do not generate outputs from Hot Standbys because we assume the
fail-stop failure model. To relax the failure assumption model so that we
can check if the outputs from the primary are valid, the network abstraction
should be modified to compare the results of the primary with the results
of its Hot Standbys.

Task Period Standby Detection Recovery
BehaviorTask 10ms Cold 22ms 12ms
ControllerTask 10ms Hot 27ms 9ms
LocalPlannerTask 100ms Cold 23ms 66ms
Planner3DTask first 100ms Hot 14ms 28ms
Planner3DTask second 100ms Hot 23ms 66ms

Table 1. Evaluation on time-based detection

3. Preliminary Evaluation

SAFER is implemented on Ubuntu 10.04.3 LTS and
deployed on Boss which won 2007 DARPA Urban Chal-
lenge [13]. To measure the preliminary performance of the
SAFER layer with the presence of a failure, we have built
a cluster composed of three Intel Quad-Core machines. We
ran a scenario used to test Boss during the competition in
2007 without the perception system. The artificial intelli-
gence algorithms for behavior and planning along with ve-
hicle control were run on the cluster. By injecting processor
failures through a script, we measured fault detection time
and fault recovery time for different tasks with different pe-
riods. The fault detection time is the time duration between
when a failure happens and when the master SAFER dae-
mon detects the failure. The fault recovery time is the time
duration between when the master SAFER daemon detects
the failure and when the failed task is completely recovered.

Table 1 captures one-time measurements when time-
based detection is used. From the data, it is seen that the
failure detection time depends on the period of the master
SAFER daemon, which is 10ms. All latencies are longer
than 10ms due to d, the network time delay. The recov-
ery time of a task is related to its task period because the
process handler of its Hot/Cold Standby should be able to
receive the command from the master SAFER daemon. Ta-
ble 2 shows the measurements when event-driven detection
is used. Since the local SAFER daemon detects local task
failure, the failure detection time is reduced.

4. Related Work
Fault-tolerant distributed embedded systems have been

extensively studied in [4, 10, 5, 1]. One clear distinc-
tion between the existing work and SAFER is that SAFER
provides the framework to support timely failure recovery
in a generalized setting. Fault-tolerant scheduling in dis-
tributed embedded real-time systems has also been widely
researched in [3, 6], which can be potentially used for the
inputs to SAFER as a configuration file.

5. Conclusion

We have proposed a layer called SAFER (System-level
Architecture for Failure Evasion in Real-time applications)
to incorporate configurable task-level fault-tolerance fea-
tures using Hot Standbys and Cold Standbys in order to
tolerate fail-stop processor and task failures for distributed
embedded real-time systems. SAFER is implemented on
Ubuntu 10.04 LTS and integrated into an autonomous vehi-
cle developed at CMU. We have presented initial measure-

Task Period Standby Detection Recovery
BehaviorTask 10ms Cold 2ms 9ms
ControllerTask 10ms Hot 4ms 2ms
LocalPlannerTask 100ms Cold 6ms 12ms
Planner3DTask first 100ms Hot 3ms 42ms
Planner3DTask second 100ms Hot 4ms 92ms

Table 2. Evaluation on event-driven detection

ments using one of the driving simulation scenarios used
during the DARPA Urban Challenge. Future work to be
done includes supporting the graceful degradation based on
load and resource changes. A comprehensive scheduling
framework of the primary and its backups can also be inte-
grated into SAFER.

References

[1] J. Balasubramanian, et al. Middleware for resource-aware
deployment and configuration of fault-tolerant real-time sys-
tems. In Proceedings of the 16th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2010.

[2] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. The
primary-backup approach. Distributed systems, 2:199–216,
1993.

[3] J. Chen, C. Yang, T. Kuo, and S. Tseng. Real-time task repli-
cation for fault tolerance in identical multiprocessor systems.
In Proceedings of the 13th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2007.

[4] F. Cristian. Reaching agreement on processor-group mem-
bership in synchronous distributed systems. Distributed
Computing, 4:175–187, 1991.

[5] P. Felber and P. Narasimhan. Experiences, strategies, and
challenges in building fault-tolerant corba systems. IEEE
Transactions on Computers, pages 467–511, 2004.

[6] J. Kim, K. Lakshmanan, and R. Rajkumar. R-BATCH: Task
partitioning for fault-tolerant multiprocessor real-time sys-
tems. In Proceedings of the 10th IEEE International Confer-
ence on Computer and Information Technology (CIT), 2010.

[7] M. McNaughton, C. Baker , T. Galatali, B. Salesky, C. Urm-
son, and J. Ziglar. Software infrastructure for an autonomous
ground vehicle. Journal of Aerospace Computing, Informa-
tion, and Communication, 5(1):491 – 505, December 2008.

[8] D. L. Mills. Internet time synchronization: the network
time protocol. IEEE Transactions on Communications,
39(10):1482–1493, October 1991.

[9] S. Oikawa and R. Rajkumar. Portable rk: a portable resource
kernel for guaranteed and enforced timing behavior. In Pro-
ceedings of the fifth IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), 1999.

[10] R. Rajkumar and M. Gagliardi. High availability in the
real-time publisher/subscriber inter-process communication
model. In Proceedings of the 17th IEEE Real-Time Systems
Symposium (RTSS), 1996.

[11] R. Simmons. Inter Process Communication (IPC). http:
//www.cs.cmu.edu/˜ipc as of January 29, 2012.

[12] C. Urmson. SimpleComms. http://www.cs.cmu.
edu/˜curmson/SimpleComms.tgz as of January 29,
2012.

[13] C. Urmson, et al. Autonomous driving in urban environ-
ments: Boss and the urban challenge. Journal of Field
Robotics Special Issue on the 2007 DARPA Urban Challenge,
Part I, 25(1):425–466, June 2008.

